零基础学习Python爬虫

目录
  • 爬虫
  • 为什么我们要使用爬虫
  • 爬虫准备工作
  • 爬虫项目讲解
    • 代码分析
      • 1.爬取网页
      • 2.逐一解析数据
      • 3.保存数据

讲解我们的爬虫之前,先概述关于爬虫的简单概念(毕竟是零基础教程)

爬虫

网络爬虫(又被称为网页蜘蛛,网络机器人)就是模拟浏览器发送网络请求,接收请求响应,一种按照一定的规则,自动地抓取互联网信息的程序。
原则上,只要是浏览器(客户端)能做的事情,爬虫都能够做。

为什么我们要使用爬虫

互联网大数据时代,给予我们的是生活的便利以及海量数据爆炸式的出现在网络中。
过去,我们通过书籍、报纸、电视、广播或许信息,这些信息数量有限,且是经过一定的筛选,信息相对而言比较有效,但是缺点则是信息面太过于狭窄了。不对称的信息传导,以致于我们视野受限,无法了解到更多的信息和知识。
互联网大数据时代,我们突然间,信息获取自由了,我们得到了海量的信息,但是大多数都是无效的垃圾信息。
例如新浪微博,一天产生数亿条的状态更新,而在百度搜索引擎中,随意搜一条——减肥100,000,000条信息。
在如此海量的信息碎片中,我们如何获取对自己有用的信息呢?
答案是筛选!
通过某项技术将相关的内容收集起来,在分析删选才能得到我们真正需要的信息。
这个信息收集分析整合的工作,可应用的范畴非常的广泛,无论是生活服务、出行旅行、金融投资、各类制造业的产品市场需求等等……都能够借助这个技术获取更精准有效的信息加以利用。
网络爬虫技术,虽说有个诡异的名字,让能第一反应是那种软软的蠕动的生物,但它却是一个可以在虚拟世界里,无往不前的利器。

爬虫准备工作

我们平时都说Python爬虫,其实这里可能有个误解,爬虫并不是Python独有的,可以做爬虫的语言有很多例如:PHP,JAVA,C#,C++,Python,选择Python做爬虫是因为Python相对来说比较简单,而且功能比较齐全。
首先我们需要下载python,我下载的是官方最新的版本 3.8.3
其次我们需要一个运行Python的环境,我用的是pychram

也可以从官方下载,
我们还需要一些库来支持爬虫的运行(有些库Python可能自带了)

差不多就是这几个库了,良心的我已经在后面写好注释了

(爬虫运行过程中,不一定就只需要上面几个库,看你爬虫的一个具体写法了,反正需要库的话我们可以直接在setting里面安装)

爬虫项目讲解

我做的是爬取豆瓣评分电影Top250的爬虫代码
我们要爬取的就是这个网站:https://movie.douban.com/top250

这边我已经爬取完毕,给大家看下效果图,我是将爬取到的内容存到xls中

我们的爬取的内容是:电影详情链接,图片链接,影片中文名,影片外国名,评分,评价数,概况,相关信息。

代码分析

先把代码发放上来,然后我根据代码逐步解析

# -*- codeing = utf-8 -*-
from bs4 import BeautifulSoup  # 网页解析,获取数据
import re  # 正则表达式,进行文字匹配`
import urllib.request, urllib.error  # 制定URL,获取网页数据
import xlwt  # 进行excel操作
#import sqlite3  # 进行SQLite数据库操作

findLink = re.compile(r'<a href="(.*?)" rel="external nofollow"  rel="external nofollow" >')  # 创建正则表达式对象,标售规则   影片详情链接的规则
findImgSrc = re.compile(r'<img.*src="(.*?)"', re.S)
findTitle = re.compile(r'<span class="title">(.*)</span>')
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')
findJudge = re.compile(r'<span>(\d*)人评价</span>')
findInq = re.compile(r'<span class="inq">(.*)</span>')
findBd = re.compile(r'<p class="">(.*?)</p>', re.S)

def main():
    baseurl = "https://movie.douban.com/top250?start="  #要爬取的网页链接
    # 1.爬取网页
    datalist = getData(baseurl)
    savepath = "豆瓣电影Top250.xls"    #当前目录新建XLS,存储进去
    # dbpath = "movie.db"              #当前目录新建数据库,存储进去
    # 3.保存数据
    saveData(datalist,savepath)      #2种存储方式可以只选择一种
    # saveData2DB(datalist,dbpath)

# 爬取网页
def getData(baseurl):
    datalist = []  #用来存储爬取的网页信息
    for i in range(0, 10):  # 调用获取页面信息的函数,10次
        url = baseurl + str(i * 25)
        html = askURL(url)  # 保存获取到的网页源码
        # 2.逐一解析数据
        soup = BeautifulSoup(html, "html.parser")
        for item in soup.find_all('div', class_="item"):  # 查找符合要求的字符串
            data = []  # 保存一部电影所有信息
            item = str(item)
            link = re.findall(findLink, item)[0]  # 通过正则表达式查找
            data.append(link)
            imgSrc = re.findall(findImgSrc, item)[0]
            data.append(imgSrc)
            titles = re.findall(findTitle, item)
            if (len(titles) == 2):
                ctitle = titles[0]
                data.append(ctitle)
                otitle = titles[1].replace("/", "")  #消除转义字符
                data.append(otitle)
            else:
                data.append(titles[0])
                data.append(' ')
            rating = re.findall(findRating, item)[0]
            data.append(rating)
            judgeNum = re.findall(findJudge, item)[0]
            data.append(judgeNum)
            inq = re.findall(findInq, item)
            if len(inq) != 0:
                inq = inq[0].replace("。", "")
                data.append(inq)
            else:
                data.append(" ")
            bd = re.findall(findBd, item)[0]
            bd = re.sub('<br(\s+)?/>(\s+)?', "", bd)
            bd = re.sub('/', "", bd)
            data.append(bd.strip())
            datalist.append(data)

    return datalist

# 得到指定一个URL的网页内容
def askURL(url):
    head = {  # 模拟浏览器头部信息,向豆瓣服务器发送消息
        "User-Agent": "Mozilla / 5.0(Windows NT 10.0; Win64; x64) AppleWebKit / 537.36(KHTML, like Gecko) Chrome / 80.0.3987.122  Safari / 537.36"
    }
    # 用户代理,表示告诉豆瓣服务器,我们是什么类型的机器、浏览器(本质上是告诉浏览器,我们可以接收什么水平的文件内容)

    request = urllib.request.Request(url, headers=head)
    html = ""
    try:
        response = urllib.request.urlopen(request)
        html = response.read().decode("utf-8")
    except urllib.error.URLError as e:
        if hasattr(e, "code"):
            print(e.code)
        if hasattr(e, "reason"):
            print(e.reason)
    return html

# 保存数据到表格
def saveData(datalist,savepath):
    print("save.......")
    book = xlwt.Workbook(encoding="utf-8",style_compression=0) #创建workbook对象
    sheet = book.add_sheet('豆瓣电影Top250', cell_overwrite_ok=True) #创建工作表
    col = ("电影详情链接","图片链接","影片中文名","影片外国名","评分","评价数","概况","相关信息")
    for i in range(0,8):
        sheet.write(0,i,col[i])  #列名
    for i in range(0,250):
        # print("第%d条" %(i+1))       #输出语句,用来测试
        data = datalist[i]
        for j in range(0,8):
            sheet.write(i+1,j,data[j])  #数据
    book.save(savepath) #保存

# def saveData2DB(datalist,dbpath):
#     init_db(dbpath)
#     conn = sqlite3.connect(dbpath)
#     cur = conn.cursor()
#     for data in datalist:
#             for index in range(len(data)):
#                 if index == 4 or index == 5:
#                     continue
#                 data[index] = '"'+data[index]+'"'
#             sql = '''
#                     insert into movie250(
#                     info_link,pic_link,cname,ename,score,rated,instroduction,info)
#                     values (%s)'''%",".join(data)
#             # print(sql)     #输出查询语句,用来测试
#             cur.execute(sql)
#             conn.commit()
#     cur.close
#     conn.close()

# def init_db(dbpath):
#     sql = '''
#         create table movie250(
#         id integer  primary  key autoincrement,
#         info_link text,
#         pic_link text,
#         cname varchar,
#         ename varchar ,
#         score numeric,
#         rated numeric,
#         instroduction text,
#         info text
#         )
#
#
#     '''  #创建数据表
#     conn = sqlite3.connect(dbpath)
#     cursor = conn.cursor()
#     cursor.execute(sql)
#     conn.commit()
#     conn.close()

# 保存数据到数据库

if __name__ == "__main__":  # 当程序执行时
    # 调用函数
     main()
    # init_db("movietest.db")
     print("爬取完毕!")

下面我根据代码,从下到下给大家讲解分析一遍

-- codeing = utf-8 --,开头的这个是设置编码为utf-8 ,写在开头,防止乱码。
然后下面import就是导入一些库,做做准备工作,(sqlite3这库我并没有用到所以我注释起来了)。
下面一些find开头的是正则表达式,是用来我们筛选信息的。
(正则表达式用到 re 库,也可以不用正则表达式,不是必须的。)
大体流程分三步走:

1. 爬取网页
2.逐一解析数据
3. 保存网页

先分析流程

1.爬取网页

baseurl 就是我们要爬虫的网页网址,往下走,调用了 getData(baseurl) ,
我们来看 getData方法

  for i in range(0, 10):  # 调用获取页面信息的函数,10次
        url = baseurl + str(i * 25)

这段大家可能看不懂,其实是这样的:
因为电影评分Top250,每个页面只显示25个,所以我们需要访问页面10次,25*10=250。

baseurl = "https://movie.douban.com/top250?start="

我们只要在baseurl后面加上数字就会跳到相应页面,比如i=1时

https://movie.douban.com/top250?start=25

我放上超链接,大家可以点击看看会跳到哪个页面,毕竟实践出真知。

然后又调用了askURL来请求网页,这个方法是请求网页的主体方法,
怕大家翻页麻烦,我再把代码复制一遍,让大家有个直观感受

def askURL(url):
    head = {  # 模拟浏览器头部信息,向豆瓣服务器发送消息
        "User-Agent": "Mozilla / 5.0(Windows NT 10.0; Win64; x64) AppleWebKit / 537.36(KHTML, like Gecko) Chrome / 80.0.3987.122  Safari / 537.36"
    }
    # 用户代理,表示告诉豆瓣服务器,我们是什么类型的机器、浏览器(本质上是告诉浏览器,我们可以接收什么水平的文件内容)

    request = urllib.request.Request(url, headers=head)
    html = ""
    try:
        response = urllib.request.urlopen(request)
        html = response.read().decode("utf-8")
    except urllib.error.URLError as e:
        if hasattr(e, "code"):
            print(e.code)
        if hasattr(e, "reason"):
            print(e.reason)
    return html

这个askURL就是用来向网页发送请求用的,那么这里就有老铁问了,为什么这里要写个head呢?

这是因为我们要是不写的话,访问某些网站的时候会被认出来爬虫,显示错误,错误代码

418

这是一个梗大家可以百度下,

418 I'm a teapot

The HTTP 418 I'm a teapot client error response code indicates that
the server refuses to brew coffee because it is a teapot. This error
is a reference to Hyper Text Coffee Pot Control Protocol which was an
April Fools' joke in 1998.

我是一个茶壶

所以我们需要 “装” ,装成我们就是一个浏览器,这样就不会被认出来,
伪装一个身份。

来,我们继续往下走,

  html = response.read().decode("utf-8")

这段就是我们读取网页的内容,设置编码为utf-8,目的就是为了防止乱码。
访问成功后,来到了第二个流程:

2.逐一解析数据

解析数据这里我们用到了 BeautifulSoup(靓汤) 这个库,这个库是几乎是做爬虫必备的库,无论你是什么写法。

下面就开始查找符合我们要求的数据,用BeautifulSoup的方法以及 re 库的
正则表达式去匹配,

findLink = re.compile(r'<a href="(.*?)" rel="external nofollow"  rel="external nofollow" >')  # 创建正则表达式对象,标售规则   影片详情链接的规则
findImgSrc = re.compile(r'<img.*src="(.*?)"', re.S)
findTitle = re.compile(r'<span class="title">(.*)</span>')
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')
findJudge = re.compile(r'<span>(\d*)人评价</span>')
findInq = re.compile(r'<span class="inq">(.*)</span>')
findBd = re.compile(r'<p class="">(.*?)</p>', re.S)

匹配到符合我们要求的数据,然后存进 dataList , 所以 dataList 里就存放着我们需要的数据了。

最后一个流程:

3.保存数据

    # 3.保存数据
    saveData(datalist,savepath)      #2种存储方式可以只选择一种
    # saveData2DB(datalist,dbpath)

保存数据可以选择保存到 xls 表, 需要(xlwt库支持)
也可以选择保存数据到 sqlite数据库, 需要(sqlite3库支持)

这里我选择保存到 xls 表 ,这也是为什么我注释了一大堆代码,注释的部分就是保存到 sqlite 数据库的代码,二者选一就行

保存到 xls 的主体方法是 saveData (下面的saveData2DB方法是保存到sqlite数据库):

def saveData(datalist,savepath):
    print("save.......")
    book = xlwt.Workbook(encoding="utf-8",style_compression=0) #创建workbook对象
    sheet = book.add_sheet('豆瓣电影Top250', cell_overwrite_ok=True) #创建工作表
    col = ("电影详情链接","图片链接","影片中文名","影片外国名","评分","评价数","概况","相关信息")
    for i in range(0,8):
        sheet.write(0,i,col[i])  #列名
    for i in range(0,250):
        # print("第%d条" %(i+1))       #输出语句,用来测试
        data = datalist[i]
        for j in range(0,8):
            sheet.write(i+1,j,data[j])  #数据
    book.save(savepath) #保存

创建工作表,创列(会在当前目录下创建),

   sheet = book.add_sheet('豆瓣电影Top250', cell_overwrite_ok=True) #创建工作表
    col = ("电影详情链接","图片链接","影片中文名","影片外国名","评分","评价数","概况","相关信息")

然后把 dataList里的数据一条条存进去就行。

最后运作成功后,会在左侧生成这么一个文件

打开之后看看是不是我们想要的结果

成了,成了!

如果我们需要以数据库方式存储,可以先生成 xls 文件,再把 xls 文件导入数据库中,就可以啦

以上就是零基础学习Python爬虫的详细内容,更多关于Python爬虫的资料请关注我们其它相关文章!

(0)

相关推荐

  • 教你如何利用python3爬虫爬取漫画岛-非人哉漫画

    最近学了一点点python爬虫的知识,面向百度编程爬了一本小说之后感觉有点不满足,于是突发奇想尝试爬一本漫画下来看看. 一.效果展示 首先是我们想要爬取的漫画网页:http://www.manhuadao.cn/ 网页截图: 其次是爬取下来的效果: 每一回的文件夹里面是这样的: (因为网站图片的问题...所以就成了这个鬼样子) 二.分析原理 1.准备:需要vscode或者其他能够编译运行python的软件,推荐python版本3.X ,否则有可能出现编译问题. 下载所需模块:win+R进入命令行

  • python 简单的股票基金爬虫

    项目地址 https://github.com/aliyoge/fund_crawler_py 所用到的技术 IP代理池 多线程 爬虫 sql 开始编写爬虫 1.首先,开始分析天天基金网的一些数据.经过抓包分析,可知: ./fundcode_search.js包含所有基金代码的数据. 2.根据基金代码,访问地址: fundgz.1234567.com.cn/js/ + 基金代码 + .js可以获取基金实时净值和估值信息. 3.根据基金代码,访问地址: fundf10.eastmoney.com/

  • Python爬虫爬取商品失败处理方法

    1.登陆网站,开启开发者模式. 可以在浏览器中点击右键检查或者F12打开开发者模式. 2.点选 NetWork,DOC,然后刷新页面. 在 network 中选择 doc,在请求的 headers 中搜索 cookie. 3.获取对应的 cookie 以及 user-agent. 4.在代码中添加到 headers 里面. def getHTMLText(url): kv = { 'cookie': 'adsgadfafegadsgadsfaefasdfaewfadsfag' 'uaer-age

  • python爬虫设置每个代理ip的简单方法

    python爬虫设置每个代理ip的方法: 1.添加一段代码,设置代理,每隔一段时间换一个代理. urllib2 默认会使用环境变量 http_proxy 来设置 HTTP Proxy.假如一个网站它会检测某一段时间某个 IP 的访问次数,如果访问次数过多,它会禁止你的访问.所以你可以设置一些代理服务器来帮助你做工作,每隔一段时间换一个代理,网站君都不知道是谁在捣鬼了,这酸爽! 下面一段代码说明了代理的设置用法. import urllib2 enable_proxy = True proxy_h

  • Python爬虫中urllib3与urllib的区别是什么

    目录 urllib库 urllib.request模块 Request对象 1 . 请求头添加 2. 操作cookie 3. 设置代理 urllib.parse模块 urllib.error模块 urllib.robotparse模块 网络库urllib3 网络请求 GET请求 POST请求 HTTP响应头 上传文件 超时处理 urllib库 urllib 是一个用来处理网络请求的python标准库,它包含4个模块. urllib.request---请求模块,用于发起网络请求 urllib.p

  • Python爬虫技术

    目录 一.Python爬虫简单介绍 1.抓取网页本身的接口 2.网页抓取后的处理 二.爬虫架构 三.URL管理器 1.基本功能 2.存蓄方式 3.网页下载器(urllib) 四.网页解析器(BeautifulSoup) 1.解析器选择 2.BeautifulSoup 3.使用说明 一.Python爬虫简单介绍 1.抓取网页本身的接口 相比与其他静态的编程语言,如java,c#,C++,python抓取网页的接口更简洁:相比其他动态脚本语言,如Perl,shell,python的urllib包提供

  • Python爬虫之Scrapy环境搭建案例教程

    Python爬虫之Scrapy环境搭建 如何搭建Scrapy环境 首先要安装Python环境,Python环境搭建见:https://blog.csdn.net/alice_tl/article/details/76793590 接下来安装Scrapy 1.安装Scrapy,在终端使用pip install Scrapy(注意最好是国外的环境) 进度提示如下: alicedeMacBook-Pro:~ alice$ pip install Scrapy Collecting Scrapy Usi

  • Python获取江苏疫情实时数据及爬虫分析

    目录 1.引言 2.获取目标网站 3.爬取目标网站 4.解析爬取内容 4.1. 解析全国今日总况 4.2. 解析全国各省份疫情情况 4.3. 解析江苏各地级市疫情情况 5.结果可视化 6. 代码 7. 参考 1.引言 最近江苏南京.湖南张家界陆续爆发疫情,目前已波及8省22市,全国共有2个高风险地区,52个中风险地区.身在南京,作为兢兢业业的打工人,默默地成为了"苏打绿".为了关注疫情状况,今天我们用python来爬一爬疫情的实时数据. 2.获取目标网站 为了使用python来获取疫情

  • Python趣味爬虫之爬取爱奇艺热门电影

    一.首先我们要找到目标 找到目标先分析一下网页很幸运这个只有一个网页,不需要翻页. 二.F12查看网页源代码 找到目标,分析如何获取需要的数据.找到href与电影名称 三.进行代码实现,获取想要资源. ''' 操作步骤 1,获取到url内容 2,css选择其选择内容 3,保存自己需要数据 ''' #导入爬虫需要的包 import requests from bs4 import BeautifulSoup #requests与BeautifulSoup用来解析网页的 import time #设

  • 零基础学习Python爬虫

    目录 爬虫 为什么我们要使用爬虫 爬虫准备工作 爬虫项目讲解 代码分析 1.爬取网页 2.逐一解析数据 3.保存数据 讲解我们的爬虫之前,先概述关于爬虫的简单概念(毕竟是零基础教程) 爬虫 网络爬虫(又被称为网页蜘蛛,网络机器人)就是模拟浏览器发送网络请求,接收请求响应,一种按照一定的规则,自动地抓取互联网信息的程序. 原则上,只要是浏览器(客户端)能做的事情,爬虫都能够做. 为什么我们要使用爬虫 互联网大数据时代,给予我们的是生活的便利以及海量数据爆炸式的出现在网络中. 过去,我们通过书籍.报

  • 零基础写python爬虫之使用Scrapy框架编写爬虫

    网络爬虫,是在网上进行数据抓取的程序,使用它能够抓取特定网页的HTML数据.虽然我们利用一些库开发一个爬虫程序,但是使用框架可以大大提高效率,缩短开发时间.Scrapy是一个使用Python编写的,轻量级的,简单轻巧,并且使用起来非常的方便.使用Scrapy可以很方便的完成网上数据的采集工作,它为我们完成了大量的工作,而不需要自己费大力气去开发. 首先先要回答一个问题. 问:把网站装进爬虫里,总共分几步? 答案很简单,四步: 新建项目 (Project):新建一个新的爬虫项目 明确目标(Item

  • 零基础写python爬虫之神器正则表达式

    接下来准备用糗百做一个爬虫的小例子. 但是在这之前,先详细的整理一下Python中的正则表达式的相关内容. 正则表达式在Python爬虫中的作用就像是老师点名时用的花名册一样,是必不可少的神兵利器. 一. 正则表达式基础 1.1.概念介绍 正则表达式是用于处理字符串的强大工具,它并不是Python的一部分. 其他编程语言中也有正则表达式的概念,区别只在于不同的编程语言实现支持的语法数量不同. 它拥有自己独特的语法以及一个独立的处理引擎,在提供了正则表达式的语言里,正则表达式的语法都是一样的. 下

  • 零基础写python爬虫之爬虫框架Scrapy安装配置

    前面十章爬虫笔记陆陆续续记录了一些简单的Python爬虫知识, 用来解决简单的贴吧下载,绩点运算自然不在话下. 不过要想批量下载大量的内容,比如知乎的所有的问答,那便显得游刃不有余了点. 于是乎,爬虫框架Scrapy就这样出场了! Scrapy = Scrach+Python,Scrach这个单词是抓取的意思, Scrapy的官网地址:点我点我. 那么下面来简单的演示一下Scrapy的安装流程. 具体流程参照:http://www.jb51.net/article/48607.htm 友情提醒:

  • 零基础写python爬虫之抓取百度贴吧代码分享

    这里就不给大家废话了,直接上代码,代码的解释都在注释里面,看不懂的也别来问我,好好学学基础知识去! 复制代码 代码如下: # -*- coding: utf-8 -*- #--------------------------------------- #   程序:百度贴吧爬虫 #   版本:0.1 #   作者:why #   日期:2013-05-14 #   语言:Python 2.7 #   操作:输入带分页的地址,去掉最后面的数字,设置一下起始页数和终点页数. #   功能:下载对应页

  • 零基础写python爬虫之抓取百度贴吧并存储到本地txt文件改进版

    百度贴吧的爬虫制作和糗百的爬虫制作原理基本相同,都是通过查看源码扣出关键数据,然后将其存储到本地txt文件. 项目内容: 用Python写的百度贴吧的网络爬虫. 使用方法: 新建一个BugBaidu.py文件,然后将代码复制到里面后,双击运行. 程序功能: 将贴吧中楼主发布的内容打包txt存储到本地. 原理解释: 首先,先浏览一下某一条贴吧,点击只看楼主并点击第二页之后url发生了一点变化,变成了: http://tieba.baidu.com/p/2296712428?see_lz=1&pn=

  • 零基础写python爬虫之HTTP异常处理

    先来说一说HTTP的异常处理问题. 当urlopen不能够处理一个response时,产生urlError. 不过通常的Python APIs异常如ValueError,TypeError等也会同时产生. HTTPError是urlError的子类,通常在特定HTTP URLs中产生. 1.URLError 通常,URLError在没有网络连接(没有路由到特定服务器),或者服务器不存在的情况下产生. 这种情况下,异常同样会带有"reason"属性,它是一个tuple(可以理解为不可变的

  • 零基础写python爬虫之爬虫的定义及URL构成

    一.网络爬虫的定义 网络爬虫,即Web Spider,是一个很形象的名字. 把互联网比喻成一个蜘蛛网,那么Spider就是在网上爬来爬去的蜘蛛. 网络蜘蛛是通过网页的链接地址来寻找网页的. 从网站某一个页面(通常是首页)开始,读取网页的内容,找到在网页中的其它链接地址, 然后通过这些链接地址寻找下一个网页,这样一直循环下去,直到把这个网站所有的网页都抓取完为止. 如果把整个互联网当成一个网站,那么网络蜘蛛就可以用这个原理把互联网上所有的网页都抓取下来. 这样看来,网络爬虫就是一个爬行程序,一个抓

  • 零基础写python爬虫之抓取糗事百科代码分享

    项目内容: 用Python写的糗事百科的网络爬虫. 使用方法: 新建一个Bug.py文件,然后将代码复制到里面后,双击运行. 程序功能: 在命令提示行中浏览糗事百科. 原理解释: 首先,先浏览一下糗事百科的主页:http://www.qiushibaike.com/hot/page/1 可以看出来,链接中page/后面的数字就是对应的页码,记住这一点为以后的编写做准备. 然后,右击查看页面源码: 观察发现,每一个段子都用div标记,其中class必为content,title是发帖时间,我们只需

  • 零基础写python爬虫之爬虫编写全记录

    先来说一下我们学校的网站: http://jwxt.sdu.edu.cn:7777/zhxt_bks/zhxt_bks.html 查询成绩需要登录,然后显示各学科成绩,但是只显示成绩而没有绩点,也就是加权平均分. 显然这样手动计算绩点是一件非常麻烦的事情.所以我们可以用python做一个爬虫来解决这个问题. 1.决战前夜 先来准备一下工具:HttpFox插件. 这是一款http协议分析插件,分析页面请求和响应的时间.内容.以及浏览器用到的COOKIE等. 以我为例,安装在火狐上即可,效果如图:

随机推荐