python区块链持久化和命令行接口实现简版
目录
- 说明
- 引言
- 选择数据库
- couchdb
- couchdb的安装
- 数据库结构
- 序列化
- 持久化
- 区块链迭代器
- CLI
- 测试一下
说明
本文根据https://github.com/liuchengxu/blockchain-tutorial的内容,用python实现的,但根据个人的理解进行了一些修改,大量引用了原文的内容。文章末尾有"本节完整源码实现地址"。
引言
到目前为止,我们已经构建了一个有工作量证明机制的区块链。有了工作量证明,挖矿也就有了着落。虽然目前距离一个有着完整功能的区块链越来越近了,但是它仍然缺少了一些重要的特性。在今天的内容中,我们会将区块链持久化到一个数据库中,然后会提供一个简单的命令行接口,用来完成一些与区块链的交互操作。本质上,区块链是一个分布式数据库,不过,我们暂时先忽略 “分布式” 这个部分,仅专注于 “存储” 这一点。
选择数据库
目前,我们的区块链实现里面并没有用到数据库,而是在每次运行程序时,简单地将区块链存储在内存中。那么一旦程序退出,所有的内容就都消失了。我们没有办法再次使用这条链,也没有办法与其他人共享,所以我们需要把它存储到磁盘上。
那么,我们要用哪个数据库呢?实际上,任何一个数据库都可以。在 比特币原始论文 中,并没有提到要使用哪一个具体的数据库,它完全取决于开发者如何选择。 Bitcoin Core,最初由中本聪发布,现在是比特币的一个参考实现,它使用的是 LevelDB。而我们将要使用的是…
couchdb
因为它:
- 简单易用
- 有一个web的UI界面,方便我们查看
- 丰富的查询支持
- 良好的python支持
couchdb的安装
直接安装,参考https://www.jb51.net/article/202914.htm
docker版couchdb安装,使用docker-compose安装couchdb
# couchdb.yaml version: '2' services: couchdb: image: hyperledger/fabric-couchdb ports: - 5984:5984
执行docker-compose -f couchdb.yaml up -d即可安装。
使用http://ip:5984/_utils即可访问couchdb的后台管理系统。
数据库结构
在开始实现持久化的逻辑之前,我们首先需要决定到底要如何在数据库中进行存储。为此,我们可以参考 Bitcoin Core 的做法:
简单来说,Bitcoin Core 使用两个 “bucket” 来存储数据:
- 其中一个 bucket 是 blocks,它存储了描述一条链中所有块的元数据
- 另一个 bucket 是 chainstate,存储了一条链的状态,也就是当前所有的未花费的交易输出,和一些元数据
此外,出于性能的考虑,Bitcoin Core 将每个区块(block)存储为磁盘上的不同文件。如此一来,就不需要仅仅为了读取一个单一的块而将所有(或者部分)的块都加载到内存中。而我们直接使用couchdb。
在 blocks 中,key -> value 为:
key | value |
---|---|
b + 32 字节的 block hash | block index record |
f + 4 字节的 file number | file information record |
l + 4 字节的 file number | the last block file number used |
R + 1 字节的 boolean | 是否正在 reindex |
F + 1 字节的 flag name length + flag name string | 1 byte boolean: various flags that can be on or off |
t + 32 字节的 transaction hash | transaction index record |
在 chainstate,key -> value 为:
key | value |
---|---|
c + 32 字节的 transaction hash | unspent transaction output record for that transaction |
B | 32 字节的 block hash: the block hash up to which the database represents the unspent transaction outputs |
详情可见 这里。
因为目前还没有交易,所以我们只需要 blocks bucket。另外,正如上面提到的,我们会将整个数据库存储为单个文件,而不是将区块存储在不同的文件中。所以,我们也不会需要文件编号(file number)相关的东西。最终,我们会用到的键值对有:
- 32 字节的 block-hash(转换为16进制字符串) -> block 结构
- l -> 链中最后一个块的 hash(转换为16进制字符串)
这就是实现持久化机制所有需要了解的内容了。
序列化
为了方便我们查看,这里我们不直接使用二进制数据,而将其转换为16进制字符串。所以我们需要对区块内容进行序列化。
让我们来实现 Block 的 Serialize 方法:
# class Block def serialize(self): return { "magic_no": self._magic_no, "block_header": self._block_header.serialize(), "transactions": self._transactions }
直接返回我们需要的数据构成的字典即可,而block_header则需要进一步序列化。它的序列化同样也只需要返回具体的数据字典即可,如下:
# class BlockHeader def serialize(self): return self.__dict__
反序列化则是把信息转换为区块对象。
# class Block @classmethod def deserialize(cls, data): block_header_dict = data['block_header'] block_header = BlockHeader.deserialize(block_header_dict) transactions = data["transactions"] return cls(block_header, transactions)
首先反序列化块,然后构造成一个对象,反序列化Header:
# class BlockHeader @classmethod def deserialize(cls, data): timestamp = data.get('timestamp', '') prev_block_hash = data.get('pre_block_hash', '') # hash = data.get('hash', '') hash_merkle_root = data.get('hash_merkle_root', '') height = data.get('height', '') nonce = data.get('nonce', '') block_header = cls(hash_merkle_root, height, prev_block_hash) block_header.timestamp = timestamp block_header.nonce = nonce return block_header
持久化
持久化要做的事情就是把区块数据写入到数据库中,则我们要做的事情有:
- 检查数据库是否已经有了一个区块链
- 如果没有则创建一个,创建创世块并将l指向这个块的哈希
- 添加一个区块,将l指向新添加的区块哈希
创建创世块如下:
# class BlockChain: def new_genesis_block(self): if 'l' not in self.db: genesis_block = Block.new_genesis_block('genesis_block') genesis_block.set_header_hash() self.db.create(genesis_block.block_header.hash, genesis_block.serialize()) self.set_last_hash(genesis_block.block_header.hash)
添加一个区块如下:
def add_block(self, transactions): """ add a block to block_chain """ last_block = self.get_last_block() prev_hash = last_block.get_header_hash() height = last_block.block_header.height + 1 block_header = BlockHeader('', height, prev_hash) block = Block(block_header, transactions) block.mine() block.set_header_hash() self.db.create(block.block_header.hash, block.serialize()) last_hash = block.block_header.hash self.set_last_hash(last_hash)
对couchdb的操作的简单封装如下:
class DB(Singleton): def __init__(self, db_server_url, db_name='block_chain'): self._db_server_url = db_server_url self._server = couchdb.Server(self._db_server_url) self._db_name = db_name self._db = None @property def db(self): if not self._db: try: self._db = self._server[self._db_name] except couchdb.ResourceNotFound: self._db = self._server.create(self._db_name) return self._db def create(self, id, data): self.db[id] = data return id def __getattr__(self, name): return getattr(self.db, name) def __contains__(self, name): return self.db.__contains__(name) def __getitem__(self, key): return self.db[key] def __setitem__(self, key, value): self.db[key] = value
区块链迭代器
由于我们现在使用了数据库存储,不再是数组,那么我们便失去了迭代打印区块链的特性,我们需要重写__getitem__以获得该特性,实现如下:
# class BlockChain(object): def __getitem__(self, index): last_block = self.get_last_block() height = last_block.block_header.height if index <= height: return self.get_block_by_height(index) else: raise IndexError('Index is out of range')
# class BlockChain(object): def get_block_by_height(self, height): """ Get a block by height """ query = {"selector": {"block_header": {"height": height}}} docs = self.db.find(query) block = Block(None, None) for doc in docs: block.deserialize(doc) break return block
根据区块高度获取对应的区块,此处是利用了couchdb的mongo_query的富查询来实现。
CLI
到目前为止,我们的实现还没有提供一个与程序交互的接口。是时候加上交互了:
这里我们使用argparse来解析参数:
def new_parser(): parser = argparse.ArgumentParser() sub_parser = parser.add_subparsers(help='commands') # A print command print_parser = sub_parser.add_parser( 'print', help='Print all the blocks of the blockchain') print_parser.add_argument('--print', dest='print', action='store_true') # A add command add_parser = sub_parser.add_parser( 'addblock', help='Print all the blocks of the blockchain') add_parser.add_argument( '--data', type=str, dest='add_data', help='block data') return parser def print_chain(bc): for block in bc: print(block) def add_block(bc, data): bc.add_block(data) print("Success!") def main(): parser = new_parser() args = parser.parse_args() bc = BlockChain() if hasattr(args, 'print'): print_chain(bc) if hasattr(args, 'add_data'): add_block(bc, args.add_data) if __name__ == "__main__": main()
测试一下
# 创世块创建 $python3 main.py Mining a new block Found nonce == 19ash_hex == 047f213bcb01f1ffbcdfafad57ffeead0e86924cf439594020da47ff2508291c <Document 'l'@'191-2f44a1493638684d9e000d8dd105192a' {'hash': 'e4f7adac65bcbb304af21be52a1b52bb28c0205a3746d63453d9e8c182de927a'}> Mining a new block Found nonce == 1ash_hex == 0df1ac18c84a8e524d6fe49cb04aae9af02dd85addc4ab21ac13f9d0d7ffe769 <Document 'l'@'192-168ff7ea493ca53c66690985deb5b7ac' {'hash': '01015004e21d394b1a6574eb81896e1c800f18aa22997e96b79bca22f7821a67'}> Block(_block_header=BlockHeader(timestamp='1551317137.2814202', hash_merkle_root='', prev_block_hash='', hash='f20f3c74c831d03aaa2291af23e607896a61809b5ced222483b46795a456a1c5', nonce=None, height=0)) Block(_block_header=BlockHeader(timestamp='1551317137.358466', hash_merkle_root='', prev_block_hash='f20f3c74c831d03aaa2291af23e607896a61809b5ced222483b46795a456a1c5', hash='e4f7adac65bcbb304af21be52a1b52bb28c0205a3746d63453d9e8c182de927a', nonce=19, height=1)) Block(_block_header=BlockHeader(timestamp='1551317137.4621542', hash_merkle_root='', prev_block_hash='e4f7adac65bcbb304af21be52a1b52bb28c0205a3746d63453d9e8c182de927a', hash='01015004e21d394b1a6574eb81896e1c800f18aa22997e96b79bca22f7821a67', nonce=1, height=2))
$python3 cli.py addblock --data datas Mining a new block Found nonce == 6ash_hex == 0864df4bfbb2fd115eeacfe9ff4d5813754198ba261c469000c29b74a1b391c5 <Document 'l'@'193-92e02b894d09dcd64f8284f141775920' {'hash': '462ac519b6050acaa78e1be8c2c8de298b713a2e138d7139fc882f7ae58dcc88'}> Success!
一切正常工作。
参考:
[1] persistence-and-cli
[2] 完整实现源码
以上就是python区块链持久化和命令行接口实现简版的详细内容,更多关于区块链持久化命令行接口的资料请关注我们其它相关文章!