Python预测分词的实现

目录
  • 前言
  • 加载模型
  • 构建词网
  • 维特比算法
  • 实战

前言

在机器学习中,我们有了训练集的话,就开始预测。预测是指利用模型对句子进行推断的过程。在中文分词任务中也就是利用模型推断分词序列,同时也叫解码。

在HanLP库中,二元语法的解码由ViterbiSegment分词器提供。本篇将详细介绍ViterbiSegment的使用方式

加载模型

在前篇博文中,我们已经得到了训练的一元,二元语法模型。后续的处理肯定会基于这几个文件来处理。所以,我们首先要做的就是加载这些模型到程序中:

if __name__ == "__main__":
    MODEL_PATH = "123"
    HanLP.Config.CoreDictionaryPath = MODEL_PATH + ".txt"
    HanLP.Config.BiGramDictionaryPath = MODEL_PATH + ".ngram.txt"
    CoreDictionary = SafeJClass("com.hankcs.hanlp.dictionary.CoreDictionary")
    CoreBiGramTableDictionary = SafeJClass('com.hankcs.hanlp.dictionary.CoreBiGramTableDictionary')
    print(CoreDictionary.getTermFrequency("秦机"))
    print(CoreBiGramTableDictionary.getBiFrequency("秦机","的"))

运行之后,效果如下:

这里我们使用CoreDictionary.getTermFrequency()方法获取”秦机“的频次。使用CoreBiGramTableDictionary.getBiFrequency()方法获取“秦机 的”的二元语法频次。

构建词网

在前文中我们介绍了符号“末##末“,代表句子结尾,”始##始“代表句子开头。而词网指的是句子中所有一元语法构成的网状结构。比如MSR词典中的“秦机和科技”这个句子,是给定的一元词典。我们将句子中所有单词找出来。得到如下词网:

[始##始]
[秦机]
[]
[和,和科]
[科技]
[技]
[末##末]

对应的此图如下所示:

当然,这里博主只是举例说明词网的概念,“和科”并不是一个单词。

下面,我们来通过方法构建词网。具体代码如下:

def build_wordnet(sent, trie):
    JString = JClass('java.lang.String')
    Vertex = JClass('com.hankcs.hanlp.seg.common.Vertex')
    WordNet = JClass('com.hankcs.hanlp.seg.common.WordNet')
    searcher = trie.getSearcher(JString(sent), 0)
    wordnet = WordNet(sent)
    while searcher.next():
        wordnet.add(searcher.begin + 1,
                    Vertex(sent[searcher.begin:searcher.begin + searcher.length], searcher.value, searcher.index))
    # 原子分词,保证图连通
    vertexes = wordnet.getVertexes()
    i = 0
    while i < len(vertexes):
        if len(vertexes[i]) == 0:  # 空白行
            j = i + 1
            for j in range(i + 1, len(vertexes) - 1):  # 寻找第一个非空行 j
                if len(vertexes[j]):
                    break
            wordnet.add(i, Vertex.newPunctuationInstance(sent[i - 1: j - 1]))  # 填充[i, j)之间的空白行
            i = j
        else:
            i += len(vertexes[i][-1].realWord)

    return wordnet

if __name__ == "__main__":
    MODEL_PATH = "123"
    HanLP.Config.CoreDictionaryPath = MODEL_PATH + ".txt"
    HanLP.Config.BiGramDictionaryPath = MODEL_PATH + ".ngram.txt"
    CoreDictionary = SafeJClass("com.hankcs.hanlp.dictionary.CoreDictionary")
    CoreBiGramTableDictionary = SafeJClass('com.hankcs.hanlp.dictionary.CoreBiGramTableDictionary')
    print(build_wordnet("秦机和科技", CoreDictionary.trie))

运行之后,我们会得到与上图归纳差不多的内容:

维特比算法

如果现在我们赋予上述词图每条边以二元语法的概率作为距离,那么如何求解词图上的最短路径就是一个关键问题。

假设文本长度为n,则一共有2(n-1次方)种切分方式,因为每2个字符间都有2种选择:切或者不切,时间复杂度就为O(2(n-1次方))。显然不切实际,这里我们考虑使用维特比算法。

维特比算法原理:它分为前向和后向两个步骤。

  • 前向:由起点出发从前往后遍历节点,更新从起点到该节点的最下花费以及前驱指针
  • 后向:由终点出发从后往前回溯前驱指针,取得最短路径

维特比算法用python代码的实现如下:

def viterbi(wordnet):
    nodes = wordnet.getVertexes()
    # 前向遍历
    for i in range(0, len(nodes) - 1):
        for node in nodes[i]:
            for to in nodes[i + len(node.realWord)]:
                # 根据距离公式计算节点距离,并维护最短路径上的前驱指针from
                to.updateFrom(node)
    # 后向回溯
    # 最短路径
    path = []
    # 从终点回溯
    f = nodes[len(nodes) - 1].getFirst()
    while f:
        path.insert(0, f)
        # 按前驱指针from回溯
        f = f.getFrom()
    return [v.realWord for v in path]

实战

现在我们来做个测试,我们在msr_test_gold.utf8上训练模型,为秦机和科技常见词图,最后运行维特比算法。详细代码如下所示:

if __name__ == "__main__":
    MODEL_PATH = "123"
    corpus_path = r"E:\ProgramData\Anaconda3\Lib\site-packages\pyhanlp\static\data\test\icwb2-data\gold\msr_test_gold.utf8"
    train_model(corpus_path, MODEL_PATH)
    HanLP.Config.CoreDictionaryPath = MODEL_PATH + ".txt"
    HanLP.Config.BiGramDictionaryPath = MODEL_PATH + ".ngram.txt"
    CoreDictionary = SafeJClass("com.hankcs.hanlp.dictionary.CoreDictionary")
    CoreBiGramTableDictionary = SafeJClass('com.hankcs.hanlp.dictionary.CoreBiGramTableDictionary')
    ViterbiSegment = JClass('com.hankcs.hanlp.seg.Viterbi.ViterbiSegment')
    MODEL_PATH = "123"
    HanLP.Config.CoreDictionaryPath = MODEL_PATH + ".txt"
    HanLP.Config.BiGramDictionaryPath = MODEL_PATH + ".ngram.txt"
    sent = "秦机和科技"
    wordnet = build_wordnet(sent, CoreDictionary.trie)
    print(viterbi(wordnet))

有的人可能有疑问,因为二元模型里,本身就存在秦机 和
科技这个样本。这么做不是多此一举吗?那好,我们替换sent的文本内容为“北京和广州”,这个样本可不在模型中。运行之后,效果如下:

我们发现依然能正确的分词为[北京 和 广州],这就是二元语法模型的泛化能力。至此我们走通了语料标注,训练模型,预测分词结果的完整步骤。

到此这篇关于Python预测分词的实现的文章就介绍到这了,更多相关Python预测分词内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python基于jieba库进行简单分词及词云功能实现方法

    本文实例讲述了Python基于jieba库进行简单分词及词云功能实现方法.分享给大家供大家参考,具体如下: 目标: 1.导入一个文本文件 2.使用jieba对文本进行分词 3.使用wordcloud包绘制词云 环境: Python 3.6.0 |Anaconda 4.3.1 (64-bit) 工具: jupyter notebook 从网上下载了一篇小说<老九门>,以下对这篇小说进行分词,并绘制词云图. 分词使用最流行的分词包jieba,参考:https://github.com/fxsjy/

  • python中文分词,使用结巴分词对python进行分词(实例讲解)

    在采集美女站时,需要对关键词进行分词,最终采用的是python的结巴分词方法. 中文分词是中文文本处理的一个基础性工作,结巴分词利用进行中文分词. 其基本实现原理有三点: 1.基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG) 2.采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合 3.对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法 安装(Linux环境) 下载工具包,解压后进入目录下,运行:python set

  • python实现中文分词FMM算法实例

    本文实例讲述了python实现中文分词FMM算法.分享给大家供大家参考.具体分析如下: FMM算法的最简单思想是使用贪心算法向前找n个,如果这n个组成的词在词典中出现,就ok,如果没有出现,那么找n-1个...然后继续下去.假如n个词在词典中出现,那么从n+1位置继续找下去,直到句子结束. import re def PreProcess(sentence,edcode="utf-8"): sentence = sentence.decode(edcode) sentence=re.s

  • python实现机械分词之逆向最大匹配算法代码示例

    逆向最大匹配方法 有正即有负,正向最大匹配算法大家可以参阅http://www.jb51.net/article/127404.htm 逆向最大匹配分词是中文分词基本算法之一,因为是机械切分,所以它也有分词速度快的优点,且逆向最大匹配分词比起正向最大匹配分词更符合人们的语言习惯.逆向最大匹配分词需要在已有词典的基础上,从被处理文档的末端开始匹配扫描,每次取最末端的i个字符(分词所确定的阈值i)作为匹配字段,若匹配失败,则去掉匹配字段最前面的一个字,继续匹配.而且选择的阈值越大,分词越慢,但准确性

  • python jieba分词并统计词频后输出结果到Excel和txt文档方法

    前两天,班上同学写论文,需要将很多篇论文题目按照中文的习惯分词并统计每个词出现的频率. 让我帮她实现这个功能,我在网上查了之后发现jieba这个库还挺不错的. 运行环境: 安装python2.7.13:https://www.python.org/downloads/release/python-2713/ 安装jieba:pip install jieba 安装xlwt:pip install xlwt 具体代码如下: #!/usr/bin/python # -*- coding:utf-8

  • Python中文分词库jieba,pkusegwg性能准确度比较

    中文分词(Chinese Word Segmentation),将中文语句切割成单独的词组.英文使用空格来分开每个单词的,而中文单独一个汉字跟词有时候完全不是同个含义,因此,中文分词相比英文分词难度高很多. 分词主要用于NLP 自然语言处理(Natural Language Processing),使用场景有: 搜索优化,关键词提取(百度指数) 语义分析,智能问答系统(客服系统) 非结构化文本媒体内容,如社交信息(微博热榜) 文本聚类,根据内容生成分类(行业分类) Python的中文分词 Pyt

  • python中文分词库jieba使用方法详解

    安装python中文分词库jieba 法1:Anaconda Prompt下输入conda install jieba 法2:Terminal下输入pip3 install jieba 1.分词 1.1.CUT函数简介 cut(sentence, cut_all=False, HMM=True) 返回生成器,遍历生成器即可获得分词的结果 lcut(sentence) 返回分词列表 import jieba sentence = '我爱自然语言处理' # 创建[Tokenizer.cut 生成器]

  • Python预测分词的实现

    目录 前言 加载模型 构建词网 维特比算法 实战 前言 在机器学习中,我们有了训练集的话,就开始预测.预测是指利用模型对句子进行推断的过程.在中文分词任务中也就是利用模型推断分词序列,同时也叫解码. 在HanLP库中,二元语法的解码由ViterbiSegment分词器提供.本篇将详细介绍ViterbiSegment的使用方式 加载模型 在前篇博文中,我们已经得到了训练的一元,二元语法模型.后续的处理肯定会基于这几个文件来处理.所以,我们首先要做的就是加载这些模型到程序中: if __name__

  • Python中文分词工具之结巴分词用法实例总结【经典案例】

    本文实例讲述了Python中文分词工具之结巴分词用法.分享给大家供大家参考,具体如下: 结巴分词工具的安装及基本用法,前面的文章<Python结巴中文分词工具使用过程中遇到的问题及解决方法>中已经有所描述.这里要说的内容与实际应用更贴近--从文本中读取中文信息,利用结巴分词工具进行分词及词性标注. 示例代码如下: #coding=utf-8 import jieba import jieba.posseg as pseg import time t1=time.time() f=open(&q

  • Python中文分词实现方法(安装pymmseg)

    本文实例讲述了Python中文分词实现方法.分享给大家供大家参考,具体如下: 在Python这pymmseg-cpp 还是十分方便的! 环境 ubuntu10.04 , python2.65 步骤: 1 下载mmseg-cpp的源代码 http://code.google.com/p/pymmseg-cpp/ 2 执行: tar -zxf pymmseg-cpp*.tar.gz //解压后得到pymmseg 目录 cd pymmseg\mmseg-cpp python build.py #生成

  • Python smallseg分词用法实例分析

    本文实例讲述了Python smallseg分词用法.分享给大家供大家参考.具体分析如下: #encoding=utf-8 #import psyco #psyco.full() words = [x.rstrip() for x in open("main.dic",mode='r',encoding='utf-8') ] from smallseg import SEG seg = SEG() print('Load dict...') seg.set(words) print(&

  • Python预测2020高考分数和录取情况

    "迟到"了一个月的高考终于要来了. 正好我得到了一份山东新高考模拟考的成绩和山东考试院公布的一分一段表,以及过去三年的普通高考本科普通批首次志愿录取情况统计.2020年是山东新高考改革的元年,全新的录取模式以及选考科目要求都给考生带来了非常大的挑战. 我正好就本次山东模拟考的成绩进行深入数据分析,用python可视化带大家模拟一下2020高考分数和录取情况. (代码较长,故只展示部分,完整数据+源码下载见文末) 不同考生的成绩分布图 首先对山东新高考模拟考的成绩进行总体描述: fig

  • python中文分词+词频统计的实现步骤

    目录 前言 一.文本导入 二.使用步骤 1.引入库 2.读入数据 3.取出停用词表 4.分词并去停用词(此时可以直接利用python原有的函数进行词频统计) 5. 输出分词并去停用词的有用的词到txt 6.函数调用 7.结果 附:输入一段话,统计每个字母出现的次数 总结 提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 前言 本文记录了一下Python在文本处理时的一些过程+代码 一.文本导入 我准备了一个名为abstract.txt的文本文件 接着是在网上下载了stopword

  • python中文分词教程之前向最大正向匹配算法详解

    前言 大家都知道,英文的分词由于单词间是以空格进行分隔的,所以分词要相对的容易些,而中文就不同了,中文中一个句子的分隔就是以字为单位的了,而所谓的正向最大匹配和逆向最大匹配便是一种分词匹配的方法,这里以词典匹配说明. 最大匹配算法是自然语言处理中的中文匹配算法中最基础的算法,分为正向和逆向,原理都是一样的. 正向最大匹配算法,故名思意,从左向右扫描寻找词的最大匹配. 首先我们可以规定一个词的最大长度,每次扫描的时候寻找当前开始的这个长度的词来和字典中的词匹配,如果没有找到,就缩短长度继续寻找,直

  • 浅谈python jieba分词模块的基本用法

    jieba(结巴)是一个强大的分词库,完美支持中文分词,本文对其基本用法做一个简要总结. 特点 支持三种分词模式: 精确模式,试图将句子最精确地切开,适合文本分析: 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义: 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词. 支持繁体分词 支持自定义词典 MIT 授权协议 安装jieba pip install jieba 简单用法 结巴分词分为三种模式:精确模式(默认).全模式和搜索引擎

随机推荐