Pytorch实现图像识别之数字识别(附详细注释)

使用了两个卷积层加上两个全连接层实现
本来打算从头手撕的,但是调试太耗时间了,改天有时间在从头写一份
详细过程看代码注释,参考了下一个博主的文章,但是链接没注意关了找不到了,博主看到了联系下我,我加上
代码相关的问题可以评论私聊,也可以翻看博客里的文章,部分有详细解释

Python实现代码:

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import torchvision
from torch.autograd import Variable
from torch.utils.data import DataLoader
import cv2

# 下载训练集
train_dataset = datasets.MNIST(root='E:\mnist',
                               train=True,
                               transform=transforms.ToTensor(),
                               download=True)
# 下载测试集
test_dataset = datasets.MNIST(root='E:\mnist',
                              train=False,
                              transform=transforms.ToTensor(),
                              download=True)

# dataset 参数用于指定我们载入的数据集名称
# batch_size参数设置了每个包中的图片数据个数
# 在装载的过程会将数据随机打乱顺序并进打包
batch_size = 64
# 建立一个数据迭代器
# 装载训练集
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True)
# 装载测试集
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True)

# 卷积层使用 torch.nn.Conv2d
# 激活层使用 torch.nn.ReLU
# 池化层使用 torch.nn.MaxPool2d
# 全连接层使用 torch.nn.Linear
class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Sequential(nn.Conv2d(1, 6, 3, 1, 2),
                                   nn.ReLU(), nn.MaxPool2d(2, 2))

        self.conv2 = nn.Sequential(nn.Conv2d(6, 16, 5), nn.ReLU(),
                                   nn.MaxPool2d(2, 2))

        self.fc1 = nn.Sequential(nn.Linear(16 * 5 * 5, 120),
                                 nn.BatchNorm1d(120), nn.ReLU())

        self.fc2 = nn.Sequential(
            nn.Linear(120, 84),
            nn.BatchNorm1d(84),
            nn.ReLU(),
            nn.Linear(84, 10))
        # 最后的结果一定要变为 10,因为数字的选项是 0 ~ 9

    def forward(self, x):
        x = self.conv1(x)
        # print("1:", x.shape)
        # 1: torch.Size([64, 6, 30, 30])
        # max pooling
        # 1: torch.Size([64, 6, 15, 15])
        x = self.conv2(x)
        # print("2:", x.shape)
        # 2: torch.Size([64, 16, 5, 5])
        # 对参数实现扁平化
        x = x.view(x.size()[0], -1)
        x = self.fc1(x)
        x = self.fc2(x)
        return x

def test_image_data(images, labels):
    # 初始输出为一段数字图像序列
    # 将一段图像序列整合到一张图片上 (make_grid会默认将图片变成三通道,默认值为0)
    # images: torch.Size([64, 1, 28, 28])
    img = torchvision.utils.make_grid(images)
    # img: torch.Size([3, 242, 242])
    # 将通道维度置在第三个维度
    img = img.numpy().transpose(1, 2, 0)
    # img: torch.Size([242, 242, 3])
    # 减小图像对比度
    std = [0.5, 0.5, 0.5]
    mean = [0.5, 0.5, 0.5]
    img = img * std + mean
    # print(labels)
    cv2.imshow('win2', img)
    key_pressed = cv2.waitKey(0)

# 初始化设备信息
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 学习速率
LR = 0.001
# 初始化网络
net = LeNet().to(device)
# 损失函数使用交叉熵
criterion = nn.CrossEntropyLoss()
# 优化函数使用 Adam 自适应优化算法
optimizer = optim.Adam(net.parameters(), lr=LR, )
epoch = 1
if __name__ == '__main__':
    for epoch in range(epoch):
        print("GPU:", torch.cuda.is_available())
        sum_loss = 0.0
        for i, data in enumerate(train_loader):
            inputs, labels = data
            # print(inputs.shape)
            # torch.Size([64, 1, 28, 28])
            # 将内存中的数据复制到gpu显存中去
            inputs, labels = Variable(inputs).cuda(), Variable(labels).cuda()
            # 将梯度归零
            optimizer.zero_grad()
            # 将数据传入网络进行前向运算
            outputs = net(inputs)
            # 得到损失函数
            loss = criterion(outputs, labels)
            # 反向传播
            loss.backward()
            # 通过梯度做一步参数更新
            optimizer.step()
            # print(loss)
            sum_loss += loss.item()
            if i % 100 == 99:
                print('[%d,%d] loss:%.03f' % (epoch + 1, i + 1, sum_loss / 100))
                sum_loss = 0.0
                # 将模型变换为测试模式
        net.eval()
        correct = 0
        total = 0
        for data_test in test_loader:
            _images, _labels = data_test
            # 将内存中的数据复制到gpu显存中去
            images, labels = Variable(_images).cuda(), Variable(_labels).cuda()
            # 图像预测结果
            output_test = net(images)
            # torch.Size([64, 10])
            # 从每行中找到最大预测索引
            _, predicted = torch.max(output_test, 1)
            # 图像可视化
            # print("predicted:", predicted)
            # test_image_data(_images, _labels)
            # 预测数据的数量
            total += labels.size(0)
            # 预测正确的数量
            correct += (predicted == labels).sum()
        print("correct1: ", correct)
        print("Test acc: {0}".format(correct.item() / total))

测试结果:

可以通过调用test_image_data函数查看测试图片

可以看到最后预测的准确度可以达到98%

到此这篇关于Pytorch实现图像识别之数字识别(附详细注释)的文章就介绍到这了,更多相关Pytorch 数字识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • pytorch 利用lstm做mnist手写数字识别分类的实例

    代码如下,U我认为对于新手来说最重要的是学会rnn读取数据的格式. # -*- coding: utf-8 -*- """ Created on Tue Oct 9 08:53:25 2018 @author: www """ import sys sys.path.append('..') import torch import datetime from torch.autograd import Variable from torch im

  • PyTorch CNN实战之MNIST手写数字识别示例

    简介 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的. 卷积神经网络CNN的结构一般包含这几个层: 输入层:用于数据的输入 卷积层:使用卷积核进行特征提取和特征映射 激励层:由于卷积也是一种线性运算,因此需要增加非线性映射 池化层:进行下采样,对特征图稀疏处理,减少数据运算量. 全连接层:通常在CNN的尾部进行重新拟合,减

  • 详解PyTorch手写数字识别(MNIST数据集)

    MNIST 手写数字识别是一个比较简单的入门项目,相当于深度学习中的 Hello World,可以让我们快速了解构建神经网络的大致过程.虽然网上的案例比较多,但还是要自己实现一遍.代码采用 PyTorch 1.0 编写并运行. 导入相关库 import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, t

  • 超详细PyTorch实现手写数字识别器的示例代码

    前言 深度学习中有很多玩具数据,mnist就是其中一个,一个人能否入门深度学习往往就是以能否玩转mnist数据来判断的,在前面很多基础介绍后我们就可以来实现一个简单的手写数字识别的网络了 数据的处理 我们使用pytorch自带的包进行数据的预处理 import torch import torchvision import torchvision.transforms as transforms import numpy as np import matplotlib.pyplot as plt

  • Pytorch实现图像识别之数字识别(附详细注释)

    使用了两个卷积层加上两个全连接层实现 本来打算从头手撕的,但是调试太耗时间了,改天有时间在从头写一份 详细过程看代码注释,参考了下一个博主的文章,但是链接没注意关了找不到了,博主看到了联系下我,我加上 代码相关的问题可以评论私聊,也可以翻看博客里的文章,部分有详细解释 Python实现代码: import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transf

  • 基于OpenMV的图像识别之数字识别功能

    目录 基于OpenMV的图像识别 OpenMV简介 一.数字识别 基于OpenMV的图像识别 OpenMV简介 什么是OpenMV OpenMV是由美国克里斯团队基于MicroPython发起的开源机器视觉项目,目的是创建低成本,可扩展,使用python驱动的机器视觉模块.OpenMV搭载了MicroPython解释器,使其可以在嵌入式端进行python开发,关于MicroPython可以参照我之前的博客专栏:MicroPython. OpenMV基于32位,ARM Cortex-M7内核的Op

  • PyTorch简单手写数字识别的实现过程

    目录 一.包导入及所需数据的下载 关于数据集引入的改动 二.进行数据处理变换操作 三.数据预览测试和数据装载 四.模型搭建和参数优化 关于模型搭建的改动 总代码: 测试 总结 具体流程: ① 导入相应的包,下载训练集和测试集对应需要的图像数据. ②进行图像数据的变换,使图像数据转化成pytorch可识别并计算的张量数据类型 ③数据预览测试和数据装载 ④模型搭建和参数优化 ⑤总代码 ⑥测试 一.包导入及所需数据的下载 torchvision包的主要功能是实现数据的处理.导入.预览等,所以如果需要对

  • PyTorch实现手写数字识别的示例代码

    目录 加载手写数字的数据 数据加载器(分批加载) 建立模型 模型训练 测试集抽取数据,查看预测结果 计算模型精度 自己手写数字进行预测 加载手写数字的数据 组成训练集和测试集,这里已经下载好了,所以download为False import torchvision # 是否支持gpu运算 # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # print(device) # print(torch.cud

  • jqurey 学习笔记 传智博客佟老师附详细注释

    1 .写 js 的时候用 aptana ( IDE ),有 jquery 的代码提示.  把 code assist 里面的 jqurey1.3 选上就可以了. 2 .为一个元素增加事件的时候不要在 html 里加,在 js 中加. 不要写 <input type="button" onclick="xxx" id="id"> 要写成: document.getElementById("id").onclick =

  • python实现坦克大战游戏 附详细注释

    本文实例为大家分享了python实现坦克大战的具体代码,供大家参考,具体内容如下 #功能实现游戏主窗口 import pygame,time,random#导入模块 _display = pygame.display#赋值给一个变量 调用时方便 color_red = pygame.Color(255,0,0)#同上 v class MainGame(object): screen_width = 900#游戏界面宽度 screen_height = 550#界面的高度 Tank_p1 = No

  • jquery 学习笔记 传智博客佟老师附详细注释

    1 .写 js 的时候用 aptana ( IDE ),有 jquery 的代码提示.   把 code assist 里面的 jqurey1.3 选上就可以了. 2 .为一个元素增加事件的时候不要在 html 里加,在 js 中加. 不要写 <input type="button" onclick="xxx" id="id"> 要写成: document.getElementById("id").onclick

  • C++ OpenCV实战之手写数字识别

    目录 前言 一.准备数据集 二.KNN训练 三.模型预测及结果显示 四.源码 总结 前言 本案例通过使用machine learning机器学习模块进行手写数字识别.源码注释也写得比较清楚啦,大家请看源码注释!!! 一.准备数据集 原图如图所示:总共有0~9数字类别,每个数字共20个.现在需要将下面图片切分成训练数据图片.测试数据图片.该图片尺寸为560x280,故将其切割成28x28大小数据图片.具体请看源码注释. const int classNum = 10; //总共有0~9个数字类别

  • pytorch教程实现mnist手写数字识别代码示例

    目录 1.构建网络 2.编写训练代码 3.编写测试代码 4.指导程序train和test 5.完整代码 1.构建网络 nn.Moudle是pytorch官方指定的编写Net模块,在init函数中添加需要使用的层,在foeword中定义网络流向. 下面详细解释各层: conv1层:输入channel = 1 ,输出chanael = 10,滤波器5*5 maxpooling = 2*2 conv2层:输入channel = 10 ,输出chanael = 20,滤波器5*5, dropout ma

随机推荐