详细了解JAVA NIO之Buffer(缓冲区)

当我们需要与 NIO Channel 进行交互时, 我们就需要使用到 NIO Buffer, 即数据从 Buffer读取到 Channel 中, 并且从 Channel 中写入到 Buffer 中。缓冲区本质上是一块可以写入数据,然后可以从中读取数据的内存。这块内存被包装成NIO Buffer对象,并提供了一组方法,用来方便的访问该块内存。

缓冲区基础

Buffer 类型有:

缓冲区是包在一个对象内的基础数据的数组,Buffer类相比一般简单数组而言其优点是将数据的内容和相关信息放在一个对象里面,这个对象提供了处理缓冲区数据的丰富的API。

所有缓冲区都有4个属性:capacity、limit、position、mark,并遵循:capacity>=limit>=position>=mark>=0,下面是对这4个属性的解释:

  • Capacity:     容量,即可以容纳的最大数据量;在缓冲区创建时被设定并且不能改变
  • Limit:           上界,缓冲区中当前数据量
  • Position:      位置,下一个要被读或写的元素的索引
  • Mark:           标记,调用mark()来设置mark=position,再调用reset()可以让position恢复到标记的位置即position=mark

我们通过一个简单的操作流程来说明buffer的使用,下图是新创建的容量为10的缓冲区逻辑视图:

然后进行5次调用put:

buffer.put((byte)'A').put((byte)'B').put((byte)'C').put((byte)'D').put((byte)'E')

5次调用put之后的缓冲区为:

现在缓冲区满了,我们必须将其清空。我们想把这个缓冲区传递给一个通道,以使内容能被全部写出,但现在执行get()无疑会取出未定义的数据。我们必须将 posistion设为0,然后通道就会从正确的位置开始读了,但读到哪算读完了呢?这正是limit引入的原因,它指明缓冲区有效内容的未端。这个操作 在缓冲区中叫做翻转:buffer.flip()。

Buffer的基本用法

使用Buffer读写数据一般遵循以下四个步骤:

  1. 写入数据到Buffer
  2. 调用flip()方法
  3. 从Buffer中读取数据
  4. 调用clear()方法或者compact()方法

当向buffer写入数据时,buffer会记录下写了多少数据。

一旦要读取数据,需要通过flip()方法将Buffer从写模式切换到读模式。在读模式下,可以读取之前写入到buffer的所有数据。

一旦读完了所有的数据,就需要清空缓冲区,让它可以再次被写入。有两种方式能清空缓冲区:调用clear()或compact()方法。clear()方法会清空整个缓冲区。compact()方法只会清除已经读过的数据。任何未读的数据都被移到缓冲区的起始处,新写入的数据将放到缓冲区未读数据的后面。

下面我们看一段程序来看一下Buffer的基本用法:

public static void readFile(String fileName) {
   RandomAccessFile aFile = null;
   try {
    //文件流
    aFile = new RandomAccessFile(fileName, "rw");
    //将文件输入到管道
     FileChannel inChannel = aFile.getChannel();
    //为buffer分配1024个字节大小的空间
     ByteBuffer buf = ByteBuffer.allocate(1024);
    //将buffer中的内容读取到管道中
     int bytesRead = inChannel.read(buf);
     while (bytesRead != -1) {
       //反转buffer,将写模式改为读模式
       buf.flip();
       while (buf.hasRemaining()) {
        //获取buffer中的数据
        System.out.print((char) buf.get());
       }
      //将上次分配的1024字节的内容清空,为下次接收做准备
       buf.clear();
      //管道重新读取buffer中的内容
       bytesRead = inChannel.read(buf);
     }
     aFile.close();
   } catch (Exception e) {
     e.printStackTrace();
   }
 }

字节缓冲区

我们将进一步观察字节缓冲区。所有的基本数据类型都有相应的缓冲区类(布尔型除外),但字节缓冲区有自己的独特之处。字节是操作系统及其I/O设备使用的基本数据类型。当在JVM和操作系统间传递数据时,将其他的数据类型拆分成构成它们的字节是十分必要的。如我们在后面的章节中将要看到的那样,系统层次的I/O面向字节的性质可以在整个缓冲区的设计以及它们互相配合的服务中感受到。

直接缓冲区

我们知道操作系统是在内存中进行I/O操作,这些内存区域,就操作系统方面而言,是相连的字节序列。于是,毫无疑问,只有字节缓冲区有资格参与I/O操作。即操作系统会直接存取进程,那么我们现在在JVM中进行操作,java中的内存空间是由JVM直接进行管理,但是在JVM中,字节数组可能不会在内存中连续存储,或者无用存储单元收集可能随时对其进行移动,这就不能保证I/O操作的目标是连续的。

出于这一原因,引入了直接缓冲区的概念。直接缓冲区被用于与通道和固有I/O例程交互。它们通过使用固有代码来告知操作系统直接释放或填充内存区域,对用于通道直接或原始存取的内存区域中的字节元素的存储尽了最大的努力。

直接字节缓冲区通常是I/O操作最好的选择。在设计方面,它们支持JVM可用的最高效I/O机制。非直接字节缓冲区可以被传递给通道,但是这样可能导致性能损耗。通常非直接缓冲不可能成为一个本地I/O操作的目标。如果您向一个通道中传递一个非直接ByteBuffer对象用于写入,通道可能会在每次调用中隐含地进行下面的操作:

  1. 创建一个临时的直接ByteBuffer对象。
  2. 将非直接缓冲区的内容复制到临时缓冲中。
  3. 使用临时缓冲区执行低层次I/O操作。
  4. 临时缓冲区对象离开作用域,并最终成为被回收的无用数据。

视图缓冲区

就像我们已经讨论的那样,I/O基本上可以归结成组字节数据的四处传递。在进行大数据量的I/O操作时,很又可能你会使用各种ByteBuffer类去读取文件内容,接收来自网络连接的数据,等等。一旦数据到达了你的ByteBuffer,您就需要查看它以决定怎么做或者在将它发送出去之前对它进行一些操作。ByteBuffer类提供了丰富的API来创建视图缓冲区。

视图缓冲区通过已存在的缓冲区对象实例的工厂方法来创建。这种视图对象维护它自己的属性,容量,位置,上界和标记,但是和原来的缓冲区共享数据元素。但是ByteBuffer类允许创建视图来将byte型缓冲区字节数据映射为其它的原始数据类型。例如,asLongBuffer()函数创建一个将八个字节型数据当成一个long型数据来存取的视图缓冲区。

但是使用视图缓冲区的话,一旦ByteBuffer对于视图的维护对象产生非常规行的使用,那么对于工厂方法创建的缓冲区而言,asLongBuffer()函数就不在使用这个视窗,那么这个8字节的数据当成一个long类型的数据类型来存取的数据视图。

以上就是详细了解JAVA NIO之Buffer(缓冲区)的详细内容,更多关于JAVA NIO buffer(缓冲区)的资料请关注我们其它相关文章!

(0)

相关推荐

  • 简单了解JAVA NIO

    I/O简介 在 Java 编程中,直到最近一直使用 流 的方式完成 I/O.所有 I/O 都被视为单个的字节的移动,通过一个称为 Stream 的对象一次移动一个字节.流 I/O 用于与外部世界接触.它也在内部使用,用于将对象转换为字节,然后再转换回对象. Java NIO即Java Non-blocking IO(Java非阻塞I/O),因为是在Jdk1.4之后增加的一套新的操作I/O工具包,所以一般会被叫做Java New IO.NIO是为提供I/O吞吐量而专门设计,其卓越的性能甚至可以与C

  • 详解java NIO之Channel(通道)

    通道(Channel)是java.nio的第二个主要创新.它们既不是一个扩展也不是一项增强,而是全新.极好的Java I/O示例,提供与I/O服务的直接连接.Channel用于在字节缓冲区和位于通道另一侧的实体(通常是一个文件或套接字)之间有效地传输数据. channel介绍 通道是访问I/O服务的导管.I/O可以分为广义的两大类别:File I/O和Stream I/O.那么相应地有两种类型的通道也就不足为怪了,它们是文件(file)通道和套接字(socket)通道.我们看到在api里有一个F

  • 深入了解java NIO之Selector(选择器)

    这一节我们将探索选择器(selectors).选择器提供选择执行已经就绪的任务的能力,这使得多元 I/O 成为可能.就像在第一章中描述的那样,就绪选择和多元执行使得单线程能够有效率地同时管理多个 I/O 通道(channels).C/C++代码的工具箱中,许多年前就已经有 select()和 poll()这两个POSIX(可移植性操作系统接口)系统调用可供使用了.许过操作系统也提供相似的功能,但对Java 程序员来说,就绪选择功能直到 JDK 1.4 才成为可行的方案. 下面我们来使用选择器:

  • 详细了解JAVA NIO之Buffer(缓冲区)

    当我们需要与 NIO Channel 进行交互时, 我们就需要使用到 NIO Buffer, 即数据从 Buffer读取到 Channel 中, 并且从 Channel 中写入到 Buffer 中.缓冲区本质上是一块可以写入数据,然后可以从中读取数据的内存.这块内存被包装成NIO Buffer对象,并提供了一组方法,用来方便的访问该块内存. 缓冲区基础 Buffer 类型有: 缓冲区是包在一个对象内的基础数据的数组,Buffer类相比一般简单数组而言其优点是将数据的内容和相关信息放在一个对象里面

  • Java NIO 中Buffer 缓冲区解析

    目录 一.Buffer 简介 二.Buffer 的基本方法 1.使用 Buffer 读写数据 2.使用 Buffer 的例子 三.Buffer 的 capactity.posittion 和limit 四.Buffer 的类型 五.Buffer 分配和写数据 1. Buffer 分配 2.向 buffer 中写数据 3.flip() 方法 六.从 Buffer 中读取数据 七.Buffer 几个方法 1.rewind() 方法 2.clear() 与 compact() 方法 3.mark()

  • 使用java NIO及高速缓冲区写入文件过程解析

    这篇文章主要介绍了使用java NIO及高速缓冲区写入文件过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码如下 byte[] bytes = Files.readAllBytes(Paths.get("E:\\pdf\\aaa\\html\\text.txt").normalize()); String text = IOUtils.toString(bytes); String xml = text.substring(

  • Java Buffer缓冲区(NIO)

    目录 Java NIO(Buffer) 1.1 Buffer 简介 1.2 Buffer 的基本用法 1.使用 Buffer 读写数据,一般遵循以下四个步骤: 2.使用 ByteBuffer的例子 3.使用 IntBuffer 的例子 1.3 Buffer 的 capacity.position 和 limit (1)capacity (2)position (3)limit 1.4 Buffer 的类型 1.5 Buffer 分配和写数据 1.Buffer 分配 2.向 Buffer 中写数据

  • java NIO 详解

    Java NIO提供了与标准IO不同的IO工作方式: Channels and Buffers(通道和缓冲区):标准的IO基于字节流和字符流进行操作的,而NIO是基于通道(Channel)和缓冲区(Buffer)进行操作,数据总是从通道读取到缓冲区中,或者从缓冲区写入到通道中. Asynchronous IO(异步IO):Java NIO可以让你异步的使用IO,例如:当线程从通道读取数据到缓冲区时,线程还是可以进行其他事情.当数据被写入到缓冲区时,线程可以继续处理它.从缓冲区写入通道也类似. S

  • Java NIO Buffer过程详解

    前言 在与NIO通道交互时使用Java NIO Buffer. 如您所知,数据从通道读入缓冲区,并从缓冲区写入通道. 缓冲区本质上是一个可以写入数据的内存块,然后可以再次读取. 此内存块包含在NIO Buffer对象中,该对象提供了一组方法,可以更轻松地使用内存块. 基本缓冲区用法 使用缓冲区读取和写入数据通常遵循这4个小步骤: 1.写入数据到缓冲区 2.调用 buffer.flip() 3.从缓冲区读取数据 4.调用 buffer.clear() 或者 buffer.compact() 当你将

  • Java NIO Buffer实现原理详解

    目录 1.Buffer的继承体系 2.Buffer的操作API使用案例 3.Buffer的基本原理 4.allocate方法初始化一个指定容量大小的缓冲区 5.slice方法缓冲区分片 6.只读缓冲区 7.直接缓冲区 8.内存映射 1.Buffer的继承体系 如上图所示,对于Java中的所有基本类型,都会有一个具体的Buffer类型与之对应,一般我们最经常使用的是ByteBuffer. 2.Buffer的操作API使用案例 举一个IntBuffer的使用案例: /** * @author csp

  • 浅析Java NIO 直接缓冲区和非直接缓冲区

    定义 以上是书<深入理解java虚拟机>对直接内存的描述.直接缓冲区用的就是直接内存. java nio字节缓冲区要么是直接的,要么是非直接的.如果为直接字节缓冲区,则java虚拟机会尽最大努力直接在此缓冲区上执行本机的IO操作,也就是说,在每次调用基础操作系统的一个本机IO操作前后,虚拟机都会尽量避免将内核缓冲区内容复制到用户进程缓冲区中,或者反过来,尽量避免从用户进程缓冲区复制到内核缓冲区中. 直接缓冲区可以通过调用该缓冲区类的allocateDirect(int capacity) 方法

  • Java NIO和IO的区别

    下表总结了Java NIO和IO之间的主要差别,我会更详细地描述表中每部分的差异. 复制代码 代码如下: IO                NIO面向流            面向缓冲阻塞IO            非阻塞IO无                选择器 面向流与面向缓冲 Java NIO和IO之间第一个最大的区别是,IO是面向流的,NIO是面向缓冲区的. Java IO面向流意味着每次从流中读一个或多个字节,直至读取所有字节,它们没有被缓存在任何地方.此外,它不能前后移动流中的数

  • 详细解读Java的串口编程

    常见问题 JavaComm 和 RxTX 安装时有一些与众不同的地方.强烈建议按照安装说明一点点的安装.如果安装说明要求一个jar文件或一个共享库必须在某一特定的文件夹下,那这就意味着需要严肃对待.如果说明要求一个特定的文件或设备需要拥有一个特定的所有权或访问权,这也意味着需要严肃处理.很多安装问题都只是因为没有按照安装说明要求的去做而引起的. 特别要注意的是一些版本的JavaComm会带有两个安装说明.一个用于java 1.2及以后的版本,一个用于java 1.1版本.使用错误的安装说明会导致

随机推荐