python 图像增强算法实现详解

使用python编写了共六种图像增强算法:

1)基于直方图均衡化
2)基于拉普拉斯算子
3)基于对数变换
4)基于伽马变换
5)限制对比度自适应直方图均衡化:CLAHE
6)retinex-SSR
7)retinex-MSR其中,6和7属于同一种下的变化。
将每种方法编写成一个函数,封装,可以直接在主函数中调用。
采用同一幅图进行效果对比。

图像增强的效果为:

直方图均衡化:对比度较低的图像适合使用直方图均衡化方法来增强图像细节
拉普拉斯算子可以增强局部的图像对比度
log对数变换对于整体对比度偏低并且灰度值偏低的图像增强效果较好
伽马变换对于图像对比度偏低,并且整体亮度值偏高(对于相机过曝)情况下的图像增强效果明显
CLAHE和retinex的效果均较好

python代码为:

# 图像增强算法,图像锐化算法
# 1)基于直方图均衡化 2)基于拉普拉斯算子 3)基于对数变换 4)基于伽马变换 5)CLAHE 6)retinex-SSR 7)retinex-MSR
# 其中,基于拉普拉斯算子的图像增强为利用空域卷积运算实现滤波
# 基于同一图像对比增强效果
# 直方图均衡化:对比度较低的图像适合使用直方图均衡化方法来增强图像细节
# 拉普拉斯算子可以增强局部的图像对比度
# log对数变换对于整体对比度偏低并且灰度值偏低的图像增强效果较好
# 伽马变换对于图像对比度偏低,并且整体亮度值偏高(对于相机过曝)情况下的图像增强效果明显

import cv2
import numpy as np
import matplotlib.pyplot as plt

# 直方图均衡增强
def hist(image):
  r, g, b = cv2.split(image)
  r1 = cv2.equalizeHist(r)
  g1 = cv2.equalizeHist(g)
  b1 = cv2.equalizeHist(b)
  image_equal_clo = cv2.merge([r1, g1, b1])
  return image_equal_clo

# 拉普拉斯算子
def laplacian(image):
  kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
  image_lap = cv2.filter2D(image, cv2.CV_8UC3, kernel)
  return image_lap

# 对数变换
def log(image):
  image_log = np.uint8(np.log(np.array(image) + 1))
  cv2.normalize(image_log, image_log, 0, 255, cv2.NORM_MINMAX)
  # 转换成8bit图像显示
  cv2.convertScaleAbs(image_log, image_log)
  return image_log

# 伽马变换
def gamma(image):
  fgamma = 2
  image_gamma = np.uint8(np.power((np.array(image) / 255.0), fgamma) * 255.0)
  cv2.normalize(image_gamma, image_gamma, 0, 255, cv2.NORM_MINMAX)
  cv2.convertScaleAbs(image_gamma, image_gamma)
  return image_gamma

# 限制对比度自适应直方图均衡化CLAHE
def clahe(image):
  b, g, r = cv2.split(image)
  clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
  b = clahe.apply(b)
  g = clahe.apply(g)
  r = clahe.apply(r)
  image_clahe = cv2.merge([b, g, r])
  return image_clahe

def replaceZeroes(data):
  min_nonzero = min(data[np.nonzero(data)])
  data[data == 0] = min_nonzero
  return data

# retinex SSR
def SSR(src_img, size):
  L_blur = cv2.GaussianBlur(src_img, (size, size), 0)
  img = replaceZeroes(src_img)
  L_blur = replaceZeroes(L_blur)

  dst_Img = cv2.log(img/255.0)
  dst_Lblur = cv2.log(L_blur/255.0)
  dst_IxL = cv2.multiply(dst_Img, dst_Lblur)
  log_R = cv2.subtract(dst_Img, dst_IxL)

  dst_R = cv2.normalize(log_R,None, 0, 255, cv2.NORM_MINMAX)
  log_uint8 = cv2.convertScaleAbs(dst_R)
  return log_uint8

def SSR_image(image):
  size = 3
  b_gray, g_gray, r_gray = cv2.split(image)
  b_gray = SSR(b_gray, size)
  g_gray = SSR(g_gray, size)
  r_gray = SSR(r_gray, size)
  result = cv2.merge([b_gray, g_gray, r_gray])
  return result

# retinex MMR
def MSR(img, scales):
  weight = 1 / 3.0
  scales_size = len(scales)
  h, w = img.shape[:2]
  log_R = np.zeros((h, w), dtype=np.float32)

  for i in range(scales_size):
    img = replaceZeroes(img)
    L_blur = cv2.GaussianBlur(img, (scales[i], scales[i]), 0)
    L_blur = replaceZeroes(L_blur)
    dst_Img = cv2.log(img/255.0)
    dst_Lblur = cv2.log(L_blur/255.0)
    dst_Ixl = cv2.multiply(dst_Img, dst_Lblur)
    log_R += weight * cv2.subtract(dst_Img, dst_Ixl)

  dst_R = cv2.normalize(log_R,None, 0, 255, cv2.NORM_MINMAX)
  log_uint8 = cv2.convertScaleAbs(dst_R)
  return log_uint8

def MSR_image(image):
  scales = [15, 101, 301] # [3,5,9]
  b_gray, g_gray, r_gray = cv2.split(image)
  b_gray = MSR(b_gray, scales)
  g_gray = MSR(g_gray, scales)
  r_gray = MSR(r_gray, scales)
  result = cv2.merge([b_gray, g_gray, r_gray])
  return result

if __name__ == "__main__":
  image = cv2.imread("example.jpg")
  image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

  plt.subplot(4, 2, 1)
  plt.imshow(image)
  plt.axis('off')
  plt.title('Offical')

  # 直方图均衡增强
  image_equal_clo = hist(image)

  plt.subplot(4, 2, 2)
  plt.imshow(image_equal_clo)
  plt.axis('off')
  plt.title('equal_enhance')

  # 拉普拉斯算法增强
  image_lap = laplacian(image)

  plt.subplot(4, 2, 3)
  plt.imshow(image_lap)
  plt.axis('off')
  plt.title('laplacian_enhance')

  # LoG对象算法增强
  image_log = log(image)

  plt.subplot(4, 2, 4)
  plt.imshow(image_log)
  plt.axis('off')
  plt.title('log_enhance')

  # 伽马变换
  image_gamma = gamma(image)

  plt.subplot(4, 2, 5)
  plt.imshow(image_gamma)
  plt.axis('off')
  plt.title('gamma_enhance')

  # CLAHE
  image_clahe = clahe(image)

  plt.subplot(4, 2, 6)
  plt.imshow(image_clahe)
  plt.axis('off')
  plt.title('CLAHE')

  # retinex_ssr
  image_ssr = SSR_image(image)

  plt.subplot(4, 2, 7)
  plt.imshow(image_ssr)
  plt.axis('off')
  plt.title('SSR')

  # retinex_msr
  image_msr = MSR_image(image)

  plt.subplot(4, 2, 8)
  plt.imshow(image_msr)
  plt.axis('off')
  plt.title('MSR')

  plt.show()

增强效果如下图所示:

到此这篇关于python 图像增强算法实现详解的文章就介绍到这了,更多相关python 图像增强算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python 基于opencv实现图像增强

    为了得到更加清晰的图像我们需要通过技术对图像进行处理,比如使用对比度增强的方法来处理图像,对比度增强就是对图像输出的灰度级放大到指定的程度,获得图像质量的提升.本文主要通过代码的方式,通过OpenCV的内置函数将图像处理到我们理想的结果. 灰度直方图 灰度直方图通过描述灰度级在图像矩阵中的像素个数来展示图像灰度级的信息,通过灰度直方图的统计我们可以看到每个灰度值的占有率.下面是一个灰度直方图的实现: import cv2 import numpy as np import sys import

  • python 图像增强算法实现详解

    使用python编写了共六种图像增强算法: 1)基于直方图均衡化 2)基于拉普拉斯算子 3)基于对数变换 4)基于伽马变换 5)限制对比度自适应直方图均衡化:CLAHE 6)retinex-SSR 7)retinex-MSR其中,6和7属于同一种下的变化. 将每种方法编写成一个函数,封装,可以直接在主函数中调用. 采用同一幅图进行效果对比. 图像增强的效果为: 直方图均衡化:对比度较低的图像适合使用直方图均衡化方法来增强图像细节 拉普拉斯算子可以增强局部的图像对比度 log对数变换对于整体对比度

  • python动态规划算法实例详解

    如果大家对这个生僻的术语不理解的话,那就先听小编给大家说个现实生活中的实际案例吧,虽然现在手机是相当的便捷,还可以付款,但是最初的时候,我们经常会使用硬币,其中,我们如果遇到手中有很多五毛或者1块钱硬币,要怎么凑出来5元钱呢?这么一个过程也可以称之为动态规划算法,下面就来看下详细内容吧. 从斐波那契数列看动态规划 斐波那契数列:Fn = Fn-1 + Fn-2 ( n = 1,2 fib(1) = fib(2) = 1) 练习:使用递归和非递归的方法来求解斐波那契数列的第 n 项 代码如下: #

  • Python 分形算法代码详解

    目录 1. 前言 什么是分形算法? 2. 分形算法 2.1 科赫雪花 2.2 康托三分集 2.3 谢尔宾斯基三角形 2.4 分形树 3. 总结 1. 前言 分形几何是几何数学中的一个分支,也称大自然几何学,由著名数学家本华曼德勃罗( 法语:BenoitB.Mandelbrot)在 1975 年构思和发展出来的一种新的几何学. 分形几何是对大自然中微观与宏观和谐统一之美的发现,分形几何最大的特点: 整体与局部的相似性: 一个完整的图形是由诸多相似的微图形组成,而整体图形又是微图形的放大. 局部是整

  • Python编程实现粒子群算法(PSO)详解

    1 原理 粒子群算法是群智能一种,是基于对鸟群觅食行为的研究和模拟而来的.假设在鸟群觅食范围,只在一个地方有食物,所有鸟儿看不到食物(不知道食物的具体位置),但是能闻到食物的味道(能知道食物距离自己位置).最好的策略就是结合自己的经验在距离鸟群中距离食物最近的区域搜索. 利用粒子群算法解决实际问题本质上就是利用粒子群算法求解函数的最值.因此需要事先把实际问题抽象为一个数学函数,称之为适应度函数.在粒子群算法中,每只鸟都可以看成是问题的一个解,这里我们通常把鸟称之为粒子,每个粒子都拥有: 位置,可

  • 基于python实现雪花算法过程详解

    这篇文章主要介绍了基于python实现雪花算法过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 Snowflake是Twitter提出来的一个算法,其目的是生成一个64bit的整数: 1bit:一般是符号位,不做处理 41bit:用来记录时间戳,这里可以记录69年,如果设置好起始时间比如今年是2018年,那么可以用到2089年,到时候怎么办?要是这个系统能用69年,我相信这个系统早都重构了好多次了. 10bit:10bit用来记录机器ID

  • Python猜数字算法题详解

    今天刷的第一道算法题,先拿一道简单点的试试手,这道题目的要求是: 两个人甲乙在猜数字,甲先从1,2,3三个数字中随机抽3次,结果是guess.乙随后也随机抽三次,结果是answer.然后对比甲乙两个人的结果.示例如下: guess:[1,2,3], answer: [1, 2, 3] 那么结果就是猜对了3次 guess: [1,2,3] answer:[3,2,1] 那么结果就是猜对了1次 guess: [1,2,3], answer:[3, 3,1] 那么结果就是猜对了0次 即将guess和a

  • Python 经典贪心算法之Prim算法案例详解

    最小生成树的Prim算法也是贪心算法的一大经典应用.Prim算法的特点是时刻维护一棵树,算法不断加边,加的过程始终是一棵树. Prim算法过程: 一条边一条边地加, 维护一棵树. 初始 E = {}空集合, V = {任选的一个起始节点} 循环(n – 1)次,每次选择一条边(v1,v2), 满足:v1属于V , v2不属于V.且(v1,v2)权值最小. E = E + (v1,v2) V = V + v2 最终E中的边是一棵最小生成树, V包含了全部节点. 以下图为例介绍Prim算法的执行过程

  • python机器学习Sklearn实战adaboost算法示例详解

    目录 pandas批量处理体测成绩 adaboost adaboost原理案例举例 弱分类器合并成强分类器 pandas批量处理体测成绩 import numpy as np import pandas as pd from pandas import Series,DataFrame import matplotlib.pyplot as plt data = pd.read_excel("/Users/zhucan/Desktop/18级高一体测成绩汇总.xls") cond =

  • Python深度强化学习之DQN算法原理详解

    目录 1 DQN算法简介 2 DQN算法原理 2.1 经验回放 2.2 目标网络 3 DQN算法伪代码 DQN算法是DeepMind团队提出的一种深度强化学习算法,在许多电动游戏中达到人类玩家甚至超越人类玩家的水准,本文就带领大家了解一下这个算法,论文的链接见下方. 论文:Human-level control through deep reinforcement learning | Nature 代码:后续会将代码上传到Github上... 1 DQN算法简介 Q-learning算法采用一

  • Python 十大经典排序算法实现详解

    目录 关于时间复杂度 关于稳定性 名词解释 1.冒泡排序 (1)算法步骤 (2)动图演示 (3)Python代码 2.选择排序 (1)算法步骤 (2)动图演示 (3)Python代码 3.插入排序 (1)算法步骤 (2)动图演示 (3)Python代码 4.希尔排序 (1)算法步骤 (2)Python代码 5.归并排序 (1)算法步骤 (2)动图演示 (3)Python代码 6.快速排序 (1)算法步骤 (2)动图演示 (3)Python代码 7.堆排序 (1)算法步骤 (2)动图演示 (3)P

随机推荐