Python基于pyopencv人脸识别并绘制GUI界面

目录
  • 项目介绍
    • 采集人脸:
    • 识别功能:
  • 项目思路
  • 项目模块
    • 1.人脸采集
    • 2.数据训练
    • 3.人脸识别
    • 4.GUI界面
  • 项目代码
    • 人脸采集
    • 数据训练
    • 人脸识别
    • 合并GUI
  • 项目总结

项目介绍

我们先来看看成果:

首先写了一个能够操作的GUI界面。

其中两个按钮对应相应的功能:

采集人脸:

识别功能:

我可是牺牲了色相五五五五。。。(电脑像素不是很好大家将就一下嘿嘿嘿)

项目思路

本项目是借助于python的一个cv2图像识别库,通过调取电脑的摄像头进行识别人脸并保存人脸图片的功能,然后在通过cv2中的这两个训练工具对保存的人脸图片进行训练(这些都是已经写好的人脸识别算法)我们直接调用就可以。

项目模块

本项目大致细分能分四个模块。

1.人脸采集

通过

cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

对摄像头的图片进行人脸信息的对比,找到人脸的核心区域然后用长方形方框给圈出来,等待指令,并且进行下一步的保存人脸图片:

这些都是我保存好的(我可是牺牲了色相呜呜呜)这些用来进行数据训练。

2.数据训练

将某一目录下的图片转化为数组,获取每张图片中人脸部分的数据保存到事先创建好的列表中,同时获取每张图片的ID,同样保存在事先创建好的列表中,最后将训练后的数据保存。

3.人脸识别

cv2会把训练好的数据放在一个文件中,我们在识别的时候直接调用这个数据和摄像头上面的人脸进行对比。

 上图为训练好的一个文件。

识别效果在上面大家也看到了!!!

4.GUI界面

这个我是通过pyqt来设计了一个简单的GUI界面,配置pyqt环境我在我之前的一篇博客介绍过了——pyqt的介绍

使用了两个简单的button来进行一个可视化。

项目代码

人脸采集

import numpy as np
import cv2
def b():
    print('正在调用摄像头!')

    faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

    cap = cv2.VideoCapture(0)
    cap.set(3,640) # set Width
    cap.set(4,480) # set Height

    while True:
        ret, img = cap.read()
        #将彩色图转为灰度图
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        faces = faceCascade.detectMultiScale(
            gray,
             scaleFactor=1.2,
            minNeighbors=5
            ,
            minSize=(20, 20)

        )

        for (x,y,w,h) in faces:
            cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
            roi_gray = gray[y:y+h, x:x+w]
            roi_color = img[y:y+h, x:x+w]

        cv2.imshow('video',img)

        k = cv2.waitKey(30) & 0xff
        if k == ord('s'):
            n = input('请输入编号:')
            cv2.imwrite('./data/jm/'+n+'.jpg',roi_gray)
        if k == 27: # press 'ESC' to quit
            break

    cap.release()
    cv2.destroyAllWindows()

b()

数据训练

import os
import cv2
import sys
from PIL import Image
import numpy as np

def getImageAndLabels(path):
    facesSamples=[]
    ids=[]
    imagePaths=[os.path.join(path,f) for f in os.listdir(path)]
    #检测人脸
    face_detector = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml')
    #打印数组imagePaths
    print('数据排列:',imagePaths)
    #遍历列表中的图片
    for imagePath in imagePaths:
        #打开图片,黑白化
        PIL_img=Image.open(imagePath).convert('L')
        #将图像转换为数组,以黑白深浅
       # PIL_img = cv2.resize(PIL_img, dsize=(400, 400))
        img_numpy=np.array(PIL_img,'uint8')
        #获取图片人脸特征
        faces = face_detector.detectMultiScale(img_numpy)
        #获取每张图片的id和姓名
        id = int(os.path.split(imagePath)[1].split('.')[0])
        #预防无面容照片
        for x,y,w,h in faces:
            ids.append(id)
            facesSamples.append(img_numpy[y:y+h,x:x+w])
        #打印脸部特征和id
        #print('fs:', facesSamples)
        print('id:', id)
        #print('fs:', facesSamples[id])
    print('fs:', facesSamples)
    #print('脸部例子:',facesSamples[0])
    #print('身份信息:',ids[0])
    return facesSamples,ids

if __name__ == '__main__':
    #图片路径
    path='./data/jm/'
    #获取图像数组和id标签数组和姓名
    faces,ids=getImageAndLabels(path)
    #获取训练对象

    recognizer=cv2.face.LBPHFaceRecognizer_create()

    #recognizer.train(faces,names)#np.array(ids)
    recognizer.train(faces,np.array(ids))
    #保存文件
    recognizer.write('trainer/trainer3.yml')

人脸识别

import cv2
import os
def a():
    #加载识别器
    recognizer = cv2.face.LBPHFaceRecognizer_create()
    recognizer.read('trainer/trainer3.yml')
    #加载分类器
    cascade_path = "haarcascade_frontalface_alt2.xml"
    face_cascade = cv2.CascadeClassifier(cascade_path)
    cam = cv2.VideoCapture(0)
    minW = 0.1*cam.get(3)
    minH = 0.1*cam.get(4)
    font = cv2.FONT_HERSHEY_SIMPLEX
    names = []
    agelist=[21,21,21,21,21,21,22]
    path='./data/jm/'
    imagePaths=[os.path.join(path,f) for f in os.listdir(path)]
    for imagePath in imagePaths:
        id = int(os.path.split(imagePath)[1].split('.')[0])
        names.append(id)
    while True:
        ret, img = cam.read()
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        faces = face_cascade.detectMultiScale(
            gray,
            scaleFactor=1.3,
            minNeighbors=5,
            minSize=(int(minW), int(minH))
        )
        for (x, y, w, h) in faces:
            cv2.rectangle(img, (x , y ), (x + w , y + h ), (225, 0, 0), 2)
            img_id, confidence = recognizer.predict(gray[y:y + h, x:x + w])
            print(img_id,confidence)
            if confidence < 50:
                confidence = "{0}%".format(round(100 - confidence))
            else:
                img_id = "Unknown"
                confidence = "{0}%".format(round(100 - confidence))
            if img_id != "Unknown":
                print('识别成功!!')
            else:
                print('识别失败!!')
            cv2.putText(img, str(img_id), (x, y + h), font, 0.55, (0, 255, 0), 1)
            cv2.putText(img, "18", (x , y + 500), font, 1, (0, 255, 0), 1)
            cv2.putText(img, "18", (x , y +h + 150), font, 1, (0, 255, 0), 1)

            cv2.putText(img, str(confidence), (x + 5, y - 5), font, 1, (0, 255, 0), 1)
        cv2.imshow('face', img)
        if cv2.waitKey(5) & 0xFF == 27:
            break

    cam.release()
    cv2.destroyAllWindows()

合并GUI

from PyQt5 import QtCore, QtGui, QtWidgets
import cv2

class Ui_MainWindow(QtWidgets.QMainWindow):
    def __init__(self):
        super(Ui_MainWindow,self).__init__()
    def setupUi(self, MainWindow):
        MainWindow.setObjectName("MainWindow")
        MainWindow.resize(565, 331)
        self.centralwidget = QtWidgets.QWidget(MainWindow)
        self.centralwidget.setObjectName("centralwidget")
        self.pushButton = QtWidgets.QPushButton(self.centralwidget)
        self.pushButton.setGeometry(QtCore.QRect(70, 190, 111, 61))
        self.pushButton.setObjectName("pushButton")
        self.pushButton_2 = QtWidgets.QPushButton(self.centralwidget)
        self.pushButton_2.setGeometry(QtCore.QRect(310, 190, 121, 61))
        self.pushButton_2.setObjectName("pushButton_2")
        self.label = QtWidgets.QLabel(self.centralwidget)
        self.label.setGeometry(QtCore.QRect(180, 60, 161, 81))
        self.label.setObjectName("label")
        MainWindow.setCentralWidget(self.centralwidget)
        self.menubar = QtWidgets.QMenuBar(MainWindow)
        self.menubar.setGeometry(QtCore.QRect(0, 0, 565, 26))
        self.menubar.setObjectName("menubar")
        MainWindow.setMenuBar(self.menubar)
        self.statusbar = QtWidgets.QStatusBar(MainWindow)
        self.statusbar.setObjectName("statusbar")
        MainWindow.setStatusBar(self.statusbar)

        self.retranslateUi(MainWindow)
        QtCore.QMetaObject.connectSlotsByName(MainWindow)

    def retranslateUi(self, MainWindow):
        _translate = QtCore.QCoreApplication.translate
        MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow"))
        self.pushButton.setText(_translate("MainWindow", "采集人脸信息"))
        self.pushButton_2.setText(_translate("MainWindow", "开始识别"))
        # self.label.setText(_translate("MainWindow", "结果:"))
        self.pushButton.clicked.connect(self.b)
        self.pushButton_2.clicked.connect(self.final)

    def b(self):
        print('正在调用摄像头!')
        print("输入'esc'为退出!!!")

        faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

        cap = cv2.VideoCapture(0)
        cap.set(3, 640)  # set Width
        cap.set(4, 480)  # set Height
        print("请输入字母's'保存信息!!")
        while True:
            ret, img = cap.read()
            # 将彩色图转为灰度图
            gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            faces = faceCascade.detectMultiScale(
                gray,
                scaleFactor=1.2,
                minNeighbors=5
                ,
                minSize=(20, 20)

            )

            for (x, y, w, h) in faces:
                cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
                roi_gray = gray[y:y + h, x:x + w]
                roi_color = img[y:y + h, x:x + w]

            cv2.imshow('video', img)

            k = cv2.waitKey(30) & 0xff

            if k == ord('s'):
                n = input('请输入编号:')
                cv2.imwrite('./data/jm/' + n + '.jpg', roi_gray)
            if k == 27:
                break

        cap.release()
        cv2.destroyAllWindows()
        print("正在训练!!!")
        self.train()

    def final(self):
        import face_zhineng.final_face
        face_zhineng.final_face.a()

    def train(self):
        import cv2
        import numpy as np
        import face_zhineng.training
        # 图片路径
        path = './data/jm/'
        faces, ids = face_zhineng.training.getImageAndLabels(path)
        # 获取训练对象
        recognizer = cv2.face.LBPHFaceRecognizer_create()
        recognizer.train(faces, np.array(ids))
        # 保存文件
        recognizer.write('trainer/trainer3.yml')
        print("训练完毕!!!")

if __name__ == '__main__':
    import sys

    app = QtWidgets.QApplication(sys.argv)
    MainWindow = QtWidgets.QMainWindow()
    ui = Ui_MainWindow()
    ui.setupUi(MainWindow)
    MainWindow.show()
    sys.exit(app.exec_())

项目总结

到此这篇关于Python基于pyopencv人脸识别并绘制GUI界面的文章就介绍到这了。希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 基于Python实现人脸识别和焦点人物检测功能

    写在前面的话 基于dlib库的模型,实现人脸识别和焦点人物的检测.最后呈现的效果为焦点人物的识别框颜色与其他人物框不一样. 准备工作 需要安装好python环境,安装好dlib.opencv-python库等,具体可以看报错信息(可以使用PyCharm来运行和编辑py文件),然后把需要的库补全,文章最后会有完整代码,但是需要与shape_predictor_68_face_landmarks.dat模型文件同处一个路径下,然后启用.(百度可以下载到) 设计过程 因为是在自己电脑完成的必做题设计,

  • 10分钟学会使用python实现人脸识别(附源码)

    前言 今天,我们用Python实现简单的人脸识别技术! Python里,简单的人脸识别有很多种方法可以实现,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的.这里介绍的是准确性比较高的一种. 一.首先 梳理一下实现人脸识别需要进行的步骤: 流程大致如此,在此之前,要先让人脸被准确的找出来,也就是能准确区分人脸的分类器,在这里我们可以用已经训练好的分类器,网上种类较全,分类准确度也比较高,我们也可以节约在这方面花的时间. 既然用的是python,那自然少不了包的使用了,在

  • 教你如何用Python实现人脸识别(含源代码)

    工具与图书馆 Python-3.x CV2-4.5.2 矮胖-1.20.3 人脸识别-1.3.0 若要安装上述软件包,请使用以下命令. pip install numpy opencv-python 要安装FaceRecognition,首先安装dlib包. pip install dlib 现在,使用以下命令安装面部识别模块 pip install face_recognition 下载人脸识别Python代码 请下载python面部识别项目的源代码: 人脸识别工程代码 项目数据集 我们可以使

  • Python人脸识别之微笑检测

    目录 一.实验准备 二.图片预处理 三.划分数据集 四.CNN提取人脸识别笑脸和非笑脸 1.创建模型 2.归一化处理 3.数据增强 4.创建网络 5.单张图片测试 6.摄像头实时测试 五.Dlib提取人脸特征识别笑脸和非笑脸 一.实验准备 环境搭建 pip install tensorflow==1.2.0 pip install keras==2.0.6 pip install dlib==19.6.1 pip install h5py==2.10 如果是新建虚拟环境,还需安装以下包 pip

  • Python基于pyopencv人脸识别并绘制GUI界面

    目录 项目介绍 采集人脸: 识别功能: 项目思路 项目模块 1.人脸采集 2.数据训练 3.人脸识别 4.GUI界面 项目代码 人脸采集 数据训练 人脸识别 合并GUI 项目总结 项目介绍 我们先来看看成果: 首先写了一个能够操作的GUI界面. 其中两个按钮对应相应的功能: 采集人脸: 识别功能: 我可是牺牲了色相五五五五...(电脑像素不是很好大家将就一下嘿嘿嘿) 项目思路 本项目是借助于python的一个cv2图像识别库,通过调取电脑的摄像头进行识别人脸并保存人脸图片的功能,然后在通过cv2

  • python实现的人脸识别打卡系统

    项目地址: https://github.com/king-xw/Face_Recogntion 简介 本仓库是使用python编写的一个简单的人脸识别考勤打卡系统 主要功能有录入人脸信息.人脸识别打卡.设置上下班时间.导出打卡日志等 下面是各模块截图 首页 录入人脸信息 人脸识别打卡 输出日志 使用 直接运行**==workAttendanceSystem==**.py即可 主要代码 import datetime import time import win32api import win3

  • Python基于百度API识别并提取图片中文字

    利用百度 AI 开发平台的 OCR 文字识别 API 识别并提取图片中的文字.首先需注册获取 API 调用的 ID 和 key,步骤如下: 打开百度AI开放平台,进入控制台中的文字识别应用(需要有百度账号). 创建一个应用,并进入管理应用,记下 AppID, API Key, Secrect Key,调用 API需用到. 最后安装 python 的百度ai接口的的库 pip install baidu-aip 以下是代码实现,需将所有识别的图片放进名为 picture 的文件夹. #!/usr/

  • Python facenet进行人脸识别测试过程解析

    1.简介:facenet 是基于 TensorFlow 的人脸识别开源库,有兴趣的同学可以扒扒源代码: https://github.com/davidsandberg/facenet 2.安装和配置 facenet 我们先将 facenet 源代码下载下来: git clone https://github.com/davidsandberg/facenet.git 在使用 facenet 前,务必安装下列这些库包: 或者直接移动到 facenet 目录下,一键安装 pip install -

  • 20行python代码实现人脸识别

    OpenCV 是最流行的计算机视觉库,原本用 C 和 C++ 开发,现在也支持 Python. 它使用机器学习算法在图像中搜索人的面部.对于人脸这么复杂的东西,并没有一个简单的检测能对是否存在人脸下结论,而需要成千上万的特征匹配.算法把人脸识别任务分解成数千个小任务,每个都不难处理.这些任务也被称为分类器. 对于类似于人脸的对象,你或许需要不少于 6000 个分类器,每一个都需要成功匹配(当然,有容错率),才能检测出人脸.但这有一个问题:对于人脸识别,算法从左上角开始计算一个个数据块,不停问"这

  • python opencv3实现人脸识别(windows)

    本文实例为大家分享了python人脸识别程序,大家可进行测试 #coding:utf-8 import cv2 import sys from PIL import Image def CatchUsbVideo(window_name, camera_idx): cv2.namedWindow(window_name) # 视频来源,可以来自一段已存好的视频,也可以直接来自USB摄像头 cap = cv2.VideoCapture(camera_idx) # 告诉OpenCV使用人脸识别分类器

  • Python基于pyecharts实现关联图绘制

    生活中有很多需要用到关联图的地方,至少我认为的是这样的图:https://www.echartsjs.com/examples/zh/editor.html?c=graph-npm 我是在使用Word2Vec计算关联词的余弦距离之后,想要更好的展示出来的时候,遇到的这种情况,就做了下拓展. 画图的步骤主要分为: 1. 将距离数据(或者相关数据)读入: 2. 按照一定的格式和参数将数据保存为json字符串: 3. 根据json串,绘制关联图. 具体而言,主要是: <1>. 首先有一批数据,如图所

  • 基于Python实现简单的人脸识别系统

    目录 前言 基本原理 代码实现 创建虚拟环境 安装必要的库 前言 最近又多了不少朋友关注,先在这里谢谢大家.关注我的朋友大多数都是大学生,而且我简单看了一下,低年级的大学生居多,大多数都是为了完成课程设计,作为一个过来人,还是希望大家平时能多抽出点时间学习一下,这种临时抱佛脚的策略要少用嗷.今天我们来python实现一个人脸识别系统,主要是借助了dlib这个库,相当于我们直接调用现成的库来进行人脸识别,就省去了之前教程中的数据收集和模型训练的步骤了. B站视频:用300行代码实现人脸识别系统_哔

  • Python摸鱼神器之利用树莓派opencv人脸识别自动控制电脑显示桌面

    前言 老早就看到新闻员工通过人脸识别监控老板来摸鱼. 有时候摸鱼太入迷了,经常在上班时间玩其他的东西被老板看到.自从在咸鱼上淘了一个树莓派3b,尝试做了一下内网穿透,搭建网站就吃灰了,接下来突发奇想就买了一个摄像头和延长线 接下来就是敲代码了 环境 树莓派3+ python3.7 win7 python3.6 过程 首先树莓派和电脑要在一个内网下面,就是一个路由器下面吧.要在树莓派设置里面开启摄像头,然后安装cv2,cv2有很多依赖库需要手动安装,很是费脑筋.原理介绍一下,人脸识别主要是依赖op

  • OpenCV+face++实现实时人脸识别解锁功能

    本文实例为大家分享了OpenCV+face++实现实时人脸识别解锁功能的具体代码,供大家参考,具体内容如下 1.背景 最近做一个小东西,需要登录功能,一开始做的就是普通的密码登录功能,但是之前看到过python可以做人脸识别,所以我就开了下脑洞,能不能实现一个自己的刷脸解锁功能. 2.知识储备 python基础语法 opencv face++文档 requests库 3.基本思路 准备一张你想要被识别出的人脸照片,后面刷脸就是按照这张照片来识别,如果和照片中是同一个人就解锁,刷脸就是打开摄像头获

随机推荐