Java数据结构之线段树的原理与实现

目录
  • 简介
  • 实现思路
    • 节点定义
    • 构建线段树
    • 求解区间和
    • 更新线段树

简介

线段树是一种二叉搜索树,是用来维护区间信息的数据结构。可以在O(logN)的时间复杂度内实现单点修改、区间修改、区间查询(区间求和,求区间最大值,求区间最小值)等操作。接下来我以实现区间求和为例子来讲解线段树(最大值和最小值与求和实现方式几乎无异),假设存在一个数组[1,4,6,3,9]。

实现思路

从线段树的定义,我们首先需要定义一个树节点,节点包含区间和(23),区间([1-5]),左节点,右节点等。(如果要实现求区间最大值,最小值,则还需包含这些)。然后需要提供构建线段树,线段树支持修改节点操作方法。

节点定义

@Data
public static class Node {
   //区间起始下标
   private int start;
   //区间结尾下标
   private int end;
   //当前区间和值
   private int value;
   private Node left;
   private Node right;
   Node(int start, int end, int value) {
       this.start = start;
       this.end = end;
       this.value = value;
  }
}

构建线段树

因为构建线段树时候需要计算当前区间和,所以我们可以先初始化一个前缀和数组,在构建线段树时候利用下标快速计算出区间和,同时为了保证每个节点有一致的操作,初始化一个头节点,指向root(这是链表树等常用的简化操作的方法)

//head 指向线段树root节点的指针,使得root节点与其余节点操作保持一致
   Node head;
   int size;
   List<Integer> nums;

   //前缀和数组,便于构建线段树时候计算区间值,用于初次构建辅助
   List<Integer> prefixSum ;
   public void init(List<Integer> nums) {
       //初始化一个头节点,便于操作
       this.head = new Node(-1, -1, -1);
       this.nums = nums;
    //初始化前缀和数组
       prefixSum = new ArrayList<>(nums.size());
       prefixSum.add(0);
       for (int i = 0; i < nums.size() ; i++) {
           prefixSum.add(prefixSum.get(prefixSum.size() - 1) + nums.get(i));
      }
    //构建线段树
       this.build(1, nums.size());
       size = nums.size();
  }

   //构建线段树
   public void build(int start, int end) {
      Node root = new Node(start, end, prefixSum.get(end) - prefixSum.get(start - 1));
     //将头节点右子树指向root
      head.right = root;
     //从root开始构建线段树
      this.madeChild(root, start, end);
  }
private void madeChild(Node node, int start, int end) {
       if (start >= end) {
           return;
      }
       //分个左右子树,左子树取start~mid,右子树取mid+1~end
       int mid = start + ((end - start) >> 1);
       if (start <= mid) {
           Node left = new Node(start, mid, prefixSum.get(mid) - prefixSum.get(start - 1));
           node.left = left;
           madeChild(left, start, mid);
      }
       if (mid + 1 <= end) {
           Node right = new Node(mid + 1, end, prefixSum.get(end) - prefixSum.get(mid));
           node.right = right;
           madeChild(right, mid + 1, end);
      }
  }

求解区间和

求解区间和过程就是遍历线段树,将求解区间与当前节点区间进行比较,如果全部存在于左子树或者右子树,则直接深度继续在左子树右子树遍历即可,但是如果求解区间在当前节点的左右子树均有部分,则需要将当前区间分为两个部分,然后分别深度遍历左右子树,最后将结果相加。

//求解区间和
   public int findSectionSum(int start, int end) {
       //深度遍历线段树,找到对应区间
       if (start < 1 || end > size || start > end) {
           return -1;
      }
       return dfsFindSectionSum(head.right, start, end);
  }    
/**
    * 深度遍历线段树结构,分为三种情况
    * 1.区间在当前节点的左子树中
    * 2.区间在当前节点的右子树中
    * 3.左子树中一部分,右子树中一部分
    * @param node
    * @param start
    * @param end
    * @return
    */
   private int dfsFindSectionSum(Node node, int start, int end) {
       if (node.start == start && node.end == end) {
           //找到区间
           return node.value;
      }
       if (this.isContain(node.left.start, node.left.end, start, end)) {
           //在左子树中
           return this.dfsFindSectionSum(node.left, start, end);
      }
       if (this.isContain(node.right.start, node.right.end, start, end)) {
           //包含在右子树中
           return this.dfsFindSectionSum(node.right, start, end);
      }
       //左边一部分,右边一部分
       return this.dfsFindSectionSum(node.left, start, node.left.end) + this.dfsFindSectionSum(node.right, node.right.start, end);
  }
   /**
    * 判断区间[start2, end2]是否包含在[start1, end1]中
    * @param start1
    * @param end1
    * @param start2
    * @param end2
    * @return
    */
   private boolean isContain(int start1, int end1, int start2, int end2){
       return start2 >= start1 && end2 <= end1;
  }

更新线段树

当更新指定位置元素的值的时候,我们需要将线段树中区间包含该节点的区间和进行更新。我们可以从根节点开始深度遍历线段树,如果当前节点包含该位置,我们更新区间和,然后根据当前节点左右子节点的区间,判断走左子树还是右子树,直至更新到叶子节点,则更新完成。

//更新线段树,将index位置的值更新为value,需要更新沿路的值
   public void update(int index, int value) {
       Node root = head.right;
       while (null != root) {
           if (index >= root.start && index <= root.end) {
               root.value += value - nums.get(index - 1);
          }
           int mid = root.start + ((root.end - root.start) >> 1);
           if (index <= mid) {
               root = root.left;
               continue;
          }
           root = root.right;
      }
       nums.set(index - 1, value);
  }

以上就是Java数据结构之线段树的原理与实现的详细内容,更多关于Java 线段树的资料请关注我们其它相关文章!

(0)

相关推荐

  • Java数据结构之二叉搜索树详解

    目录 前言 性质 实现 节点结构 初始化 插入节点 查找节点 删除节点 最后 前言 今天leetcode的每日一题450是关于删除二叉搜索树节点的,题目要求删除指定值的节点,并且需要保证二叉搜索树性质不变,做完之后,我觉得这道题将二叉搜索树特性凸显的很好,首先需要查找指定节点,然后删除节点并且保持二叉搜索树性质不变,就想利用这个题目讲讲二叉搜索树. 二叉搜索树作为一个经典的数据结构,具有链表的快速插入与删除的特点,同时查询效率也很优秀,所以应用十分广泛,例如在文件系统和数据库系统一般会采用这种数

  • Java数据结构之线索化二叉树的实现

    目录 1.线索化二叉树的介绍 2.线索化二叉树的基本特点 3.线索化二叉树的应用案例 4.前序线索化二叉树.遍历 5.后序线索化二叉树 1.线索化二叉树的介绍 将数列 {1, 3, 6, 8, 10, 14 } 构建成一颗二叉树. 问题分析: 1.当我们对上面的二叉树进行中序遍历时,数列为 {8, 3, 10, 1, 6, 14 } 2.但是 6, 8, 10, 14 这几个节点的 左右指针,并没有完全的利用上. 3.如果我们希望充分的利用 各个节点的左右指针, 让各个节点可以指向自己的前后节点

  • Java实现二叉查找树的增删查详解

    目录 定义 增加节点 查询节点 删除节点 定义 二叉查找树(ADT)是一个具有对于树种的某个节点X,它的左节点都比X小,它的右节点都比X大的二叉树.如下就是一个符合 要求的二叉查找树: 增加节点 1.定义节点类: class Node{ int val; Node left; Node right; public Node(int val){ this.val=val; } } 2.插入元素 我们采用递归的方法: 1.判断与根节点是否相同,相同无需操作 2.比根元素小往左边查找,左节点不存在的话

  • Java实现树形结构的示例代码

    目录 前言 数据库表结构 实现思路 具体代码 1.造数据,和数据库表数据一致 2.树型结构实体类 前言 由于业务需要,后端需要返回一个树型结构给前端,包含父子节点的数据已经在数据库中存储好,现在需要做的是如何以树型结构的形式返给给前端. 数据库表结构 实现思路 1.拿到有父子节点的集合数据 2.遍历集合数据,拿到所有的根节点 3.遍历根节点,拿到所有的子节点 4.递归子节点,将递归的子节点接上其父节点,直到子节点为空,递归完成 5.递归好后以集合形式返回,返回前端时以JSON格式转换后返回 具体

  • Java超详细讲解排序二叉树

    目录 排序二叉树概念 排序二叉树类的定义 添加节点 中序遍历 查找节点 查找某一节点的父节点 删除节点 排序二叉树概念 二叉排序树(Binary Sort Tree),又称二叉查找树(Binary Search Tree),亦称二叉搜索树.是数据结构中的一类. 对于二叉排序树的任何一个非叶子节点, 要求左子节点的值比当前节点的值小,右子节点的值比当前节点的值大. 对二叉排序树进行中序遍历,结果就是按从小到大排序的. 排序二叉树类的定义 public class binarySortTree {

  • Java详解AVL树的应用

    目录 一.什么是AVL树 1.二叉搜索树 2.为什么引入了AVL树 3.什么是AVL树 二.自己构造AVL树 三.AVL树的插入和删除 1.插入 1.1.右单旋 1.2.左单旋 1.3.左右双旋 1.4.右左双旋 2.删除 一.什么是AVL树 在认识AVL树之前我们先认识一下什么是二叉搜索树: 1.二叉搜索树 二叉搜索树又称为二叉排序树,二叉搜索树满足所有的左孩子节点都小于其根节点的值,所有的右孩子节点都大于其根节点的值,二叉搜索树上的每一棵子树都是一棵二叉搜索树,因此二叉搜索树通过中序遍历可以

  • Java深入分析了解平衡二叉树

    目录 AVL树的引入 基本概念 基础设计 RR(左旋) LL(右旋) LR(先左旋再右旋) RL(先右旋再左旋) 添加节点 删除节点 AVL树的引入 搜索二叉树有着极高的搜索效率,但是搜索二叉树会出现以下极端情况: 这样的二叉树搜索效率甚至比链表还低.在搜索二叉树基础上出现的平衡二叉树(AVL树)就解决了这样的问题.当平衡二叉树(AVL树)的某个节点左右子树高度差的绝对值大于1时,就会通过旋转操作减小它们的高度差. 基本概念 AVL树本质上还是一棵二叉搜索树,它的特点是: 本身首先是一棵二叉搜索

  • Java数据结构之线段树的原理与实现

    目录 简介 实现思路 节点定义 构建线段树 求解区间和 更新线段树 简介 线段树是一种二叉搜索树,是用来维护区间信息的数据结构.可以在O(logN)的时间复杂度内实现单点修改.区间修改.区间查询(区间求和,求区间最大值,求区间最小值)等操作.接下来我以实现区间求和为例子来讲解线段树(最大值和最小值与求和实现方式几乎无异),假设存在一个数组[1,4,6,3,9]. 实现思路 从线段树的定义,我们首先需要定义一个树节点,节点包含区间和(23),区间([1-5]),左节点,右节点等.(如果要实现求区间

  • Java数据结构之线段树详解

    目录 介绍 代码实现 线段树构建 区间查询 更新 总结 介绍 线段树(又名区间树)也是一种二叉树,每个节点的值等于左右孩子节点值的和,线段树示例图如下 以求和为例,根节点表示区间0-5的和,左孩子表示区间0-2的和,右孩子表示区间3-5的和,依次类推. 代码实现 /** * 使用数组实现线段树 */ public class SegmentTree<E> { private Node[] data; private int size; private Merger<E> merge

  • C++高级数据结构之线段树

    目录 前言: 高级数据结构(Ⅲ)线段树(Segment Tree) 线段树的原理 树的创建 单点修改 区间查找 完整代码及测试 前言: 高级数据结构(Ⅲ)线段树(Segment Tree) 线段树的原理 树的创建 单点修改 区间查找 完整代码及测试 高级数据结构(Ⅲ)线段树(Segment Tree) 线段树的原理 线段树是一种二叉搜索树 , 对于线段树中的每一个非叶子结点[a,b],它的左儿子表示的区间为[a, (a+b)/2],右儿子表示的区间为[(a+b)/2+1, b].因此线段树是平衡

  • Java数据结构之红黑树的原理及实现

    目录 为什么要有红黑树这种数据结构 红黑树的简介 红黑树的基本操作之旋转 红黑树之添加元素 红黑树之删除结点 删除结点没有儿子的情况 删除结点仅有一个儿子结点的情况 删除结点有两个儿子结点 红黑树动态可视化网站 红黑树参考代码 为什么要有红黑树这种数据结构 我们知道ALV树是一种严格按照定义来实现的平衡二叉查找树,所以它查找的效率非常稳定,为O(log n),由于其严格按照左右子树高度差不大于1的规则,插入和删除操作中需要大量且复杂的操作来保持ALV树的平衡(左旋和右旋),因此ALV树适用于大量

  • Java数据结构之线段树中的懒操作详解

    目录 一.问题提出 二.区间更新 三.区间查询 四.实战 1.问题描述 2.输入 3.代码 4.测试 一.问题提出 对于线段树,若要求对区间中的所有点都进行更新,可以引入懒操作. 懒操作包括区间更新和区间查询操作. 二.区间更新 对 [l,r] 区间进行更新,例如将 [l,r] 区间所有元素都更新为 v,步骤如下. 1.若当前节点区间被查询区间[l,r]覆盖,则仅对该节点进行更新并做懒标记,表示该节点已被更新,对该节点的子节点暂不更新. 2.判断是在左子树中查询还是在右子树中查询.在查询过程中,

  • Java数据结构之双端链表原理与实现方法

    本文实例讲述了Java数据结构之双端链表原理与实现方法.分享给大家供大家参考,具体如下: 一.概述: 1.什么时双端链表: 链表中保持这对最后一个连点引用的链表 2.从头部插入 要对链表进行判断,如果为空则设置尾节点为新添加的节点 3.从尾部进行插入 如果链表为空,则直接设置头节点为新添加的节点,否则设置尾节点的后一个节点为新添加的节点 4.从头部删除 判断节点是否有下个节点,如果没有则设置节点为null 二.具体实现 /** * @描述 头尾相接的链表 * @项目名称 Java_DataStr

  • Java数据结构学习之树

    一.树 1.1 概念 与线性表表示的一一对应的线性关系不同,树表示的是数据元素之间更为复杂的非线性关系. 直观来看,树是以分支关系定义的层次结构. 树在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可以用树的形象来表示. 简单来说,树表示的是1对多的关系. 定义(逻辑结构): 树(Tree)是n( n>=0 )个结点的有限集合,没有结点的树称为空树,在任意一颗非空树中: 有且仅有一个特定的称为根(root)的结点 . 当n>1的时,其余结点可分为 m( m>0 ) 个互不相交的

  • java数据结构图论霍夫曼树及其编码示例详解

    目录 霍夫曼树 一.基本介绍 二.霍夫曼树几个重要概念和举例说明  构成霍夫曼树的步骤 霍夫曼编码 一.基本介绍 二.原理剖析 注意: 霍夫曼编码压缩文件注意事项 霍夫曼树 一.基本介绍 二.霍夫曼树几个重要概念和举例说明  构成霍夫曼树的步骤 举例:以arr = {1  3  6  7  8   13   29}  public class HuffmanTree { public static void main(String[] args) { int[] arr = { 13, 7, 8

  • Java数据结构之平衡二叉树的原理与实现

    目录 1 平衡二叉树的概述 2 平衡二叉树的实现原理 2.1 单旋转 2.2 双旋转 2.3 总结 3 平衡二叉树的构建 3.1 类架构 3.2 查找的方法 3.3 检查是否平衡的方法 3.4 插入的方法 3.5 查找最大值和最小值 3.6 删除的方法 4 平衡二叉树的总结 平衡二叉树(AVL树),顾名思义,是一颗很“平衡”的树,它的平衡是相对于排序二叉树来说的.为了避免极端情况下二叉搜索树节点分布不均匀,甚至退化为链表,影响查找效率,我们引入了平衡二叉树,即让树的结构看起来尽量“均匀”,左右子

  • Java数据结构之图的原理与实现

    目录 1 图的定义和相关概念 2 图的存储结构 2.1 邻接矩阵 2.2 邻接表 3 图的遍历 3.1 深度优先遍历 3.2 广度优先遍历 4 图的实现 4.1 无向图的邻接表实现 4.2 有向图的邻接表实现 4.3 无向图的邻接矩阵实现 4.4 有向图的邻接矩阵实现 5 总结 首先介绍了图的入门概念,然后介绍了图的邻接矩阵和邻接表两种存储结构.以及深度优先遍历和广度优先遍历的两种遍历方式,最后提供了Java代码的实现. 图,算作一种比较复杂的数据结构,因此建议有一定数据结构基础的人再来学习!

随机推荐