KMP算法最浅显理解(小白教程)

说明

KMP算法看懂了觉得特别简单,思路很简单,看不懂之前,查各种资料,看的稀里糊涂,即使网上最简单的解释,依然看的稀里糊涂。
我花了半天时间,争取用最短的篇幅大致搞明白这玩意到底是啥。
这里不扯概念,只讲算法过程和代码理解:

KMP算法求解什么类型问题

字符串匹配。给你两个字符串,寻找其中一个字符串是否包含另一个字符串,如果包含,返回包含的起始位置。
如下面两个字符串:

char *str = "bacbababadababacambabacaddababacasdsd";
char *ptr = "ababaca";

str有两处包含ptr
分别在str的下标10,26处包含ptr。

“bacbababadababacambabacaddababacasdsd”;\

问题类型很简单,下面直接介绍算法

算法说明

一般匹配字符串时,我们从目标字符串str(假设长度为n)的第一个下标选取和ptr长度(长度为m)一样的子字符串进行比较,如果一样,就返回开始处的下标值,不一样,选取str下一个下标,同样选取长度为n的字符串进行比较,直到str的末尾(实际比较时,下标移动到n-m)。这样的时间复杂度是O(n*m)

KMP算法:可以实现复杂度为O(m+n)

为何简化了时间复杂度:
充分利用了目标字符串ptr的性质(比如里面部分字符串的重复性,即使不存在重复字段,在比较时,实现最大的移动量)。
上面理不理解无所谓,我说的其实也没有深刻剖析里面的内部原因。

考察目标字符串ptr
ababaca
这里我们要计算一个长度为m的转移函数next。

next数组的含义就是一个固定字符串的最长前缀和最长后缀相同的长度。

比如:abcjkdabc,那么这个数组的最长前缀和最长后缀相同必然是abc。
cbcbc,最长前缀和最长后缀相同是cbc。
abcbc,最长前缀和最长后缀相同是不存在的。

**注意最长前缀:是说以第一个字符开始,但是不包含最后一个字符。
比如aaaa相同的最长前缀和最长后缀是aaa。**
对于目标字符串ptr,ababaca,长度是7,所以next[0],next[1],next[2],next[3],next[4],next[5],next[6]分别计算的是
a,ab,aba,abab,ababa,ababac,ababaca的相同的最长前缀和最长后缀的长度。由于a,ab,aba,abab,ababa,ababac,ababaca的相同的最长前缀和最长后缀是“”,“”,“a”,“ab”,“aba”,“”,“a”,所以next数组的值是[-1,-1,0,1,2,-1,0],这里-1表示不存在,0表示存在长度为1,2表示存在长度为3。这是为了和代码相对应。

下图中的1,2,3,4是一样的。1-2之间的和3-4之间的也是一样的,我们发现A和B不一样;之前的算法是我把下面的字符串往前移动一个距离,重新从头开始比较,那必然存在很多重复的比较。现在的做法是,我把下面的字符串往前移动,使3和2对其,直接比较C和A是否一样。

代码解析

void cal_next(char *str, int *next, int len)
{
  next[0] = -1;//next[0]初始化为-1,-1表示不存在相同的最大前缀和最大后缀
  int k = -1;//k初始化为-1
  for (int q = 1; q <= len-1; q++)
  {
    while (k > -1 && str[k + 1] != str[q])//如果下一个不同,那么k就变成next[k],注意next[k]是小于k的,无论k取任何值。
    {
      k = next[k];//往前回溯
    }
    if (str[k + 1] == str[q])//如果相同,k++
    {
      k = k + 1;
    }
    next[q] = k;//这个是把算的k的值(就是相同的最大前缀和最大后缀长)赋给next[q]
  }
}

KMP

这个和next很像,具体就看代码,其实上面已经大概说完了整个匹配过程。

int KMP(char *str, int slen, char *ptr, int plen)
{
  int *next = new int[plen];
  cal_next(ptr, next, plen);//计算next数组
  int k = -1;
  for (int i = 0; i < slen; i++)
  {
    while (k >-1&& ptr[k + 1] != str[i])//ptr和str不匹配,且k>-1(表示ptr和str有部分匹配)
      k = next[k];//往前回溯
    if (ptr[k + 1] == str[i])
      k = k + 1;
    if (k == plen-1)//说明k移动到ptr的最末端
    {
      //cout << "在位置" << i-plen+1<< endl;
      //k = -1;//重新初始化,寻找下一个
      //i = i - plen + 1;//i定位到该位置,外层for循环i++可以继续找下一个(这里默认存在两个匹配字符串可以部分重叠),感谢评论中同学指出错误。
      return i-plen+1;//返回相应的位置
    }
  }
  return -1;
}

测试

  char *str = "bacbababadababacambabacaddababacasdsd";
  char *ptr = "ababaca";
  int a = KMP(str, 36, ptr, 7);
  return 0;

注意如果str里有多个匹配ptr的字符串,要想求出所有的满足要求的下标位置,在KMP算法需要稍微修改一下。见上面注释掉的代码。

复杂度分析

next函数计算复杂度是(m),开始以为是O(m^2),后来仔细想了想,cal__next里的while循环,以及外层for循环,利用均摊思想,其实是O(m),这个以后想好了再写上。

………………………………………..分割线……………………………………..
其实本文已经结束,后面的只是针对评论里的疑问,我尝试着进行解答的。

进一步说明(2018-3-14)

看了评论,大家对cal_next(..)函数和KMP()函数里的

while (k > -1 && str[k + 1] != str[q])
    {
      k = next[k];
    }

while (k >-1&& ptr[k + 1] != str[i])
      k = next[k];

这个while循环和k=next[k]很疑惑!
确实啊,我开始看这几行代码,相当懵逼,这写的啥啊,为啥这样写;后来上机跑了一下,慢慢了解到为何这样写了。这几行代码,可谓是对KMP算法本质得了解非常清楚才能想到的。很牛逼!
直接看cal_next(..)函数:
首先我们看第一个while循环,它到底干了什么。

在此之前,我们先回到原程序。原程序里有一个大的for()循环,那这个for()循环是干嘛的?

这个for循环就是计算next[0],next[1],…next[q]…的值。

里面最后一句next[q]=k就是说明每次循环结束,我们已经计算了ptr的前(q+1)个字母组成的子串的“相同的最长前缀和最长后缀的长度”。(这句话前面已经解释了!) 这个“长度”就是k。

好,到此为止,假设循环进行到 第 q 次,即已经计算了next[q],我们是怎么计算next[q+1]呢?

比如我们已经知道ababab,q=4时,next[4]=2(k=2,表示该字符串的前5个字母组成的子串ababa存在相同的最长前缀和最长后缀的长度是3,所以k=2,next[4]=2。这个结果可以理解成我们自己观察算的,也可以理解成程序自己算的,这不是重点,重点是程序根据目前的结果怎么算next[5]的).,那么对于字符串ababab,我们计算next[5]的时候,此时q=5, k=2(上一步循环结束后的结果)。那么我们需要比较的是str[k+1]和str[q]是否相等,其实就是str[1]和str[5]是否相等!,为啥从k+1比较呢,因为上一次循环中,我们已经保证了str[k]和str[q](注意这个q是上次循环的q)是相等的(这句话自己想想,很容易理解),所以到本次循环,我们直接比较str[k+1]和str[q]是否相等(这个q是本次循环的q)。
如果相等,那么跳出while(),进入if(),k=k+1,接着next[q]=k。即对于ababab,我们会得出next[5]=3。 这是程序自己算的,和我们观察的是一样的。
如果不等,我们可以用”ababac“描述这种情况。 不等,进入while()里面,进行k=next[k],这句话是说,在str[k + 1] != str[q]的情况下,我们往前找一个k,使str[k + 1]==str[q],是往前一个一个找呢,还是有更快的找法呢? (一个一个找必然可以,即你把 k = next[k] 换成k- -也是完全能运行的(更正:这句话不对啊,把k=next[k]换成k–是不行的,评论25楼举了个反例)。但是程序给出了一种更快的找法,那就是 k = next[k]。 程序的意思是说,一旦str[k + 1] != str[q],即在后缀里面找不到时,我是可以直接跳过中间一段,跑到前缀里面找,next[k]就是相同的最长前缀和最长后缀的长度。所以,k=next[k]就变成,k=next[2],即k=0。此时再比较str[0+1]和str[5]是否相等,不等,则k=next[0]=-1。跳出循环。
(这个解释能懂不?)

以上就是这个cal_next()函数里的

while (k > -1 && str[k + 1] != str[q])
    {
      k = next[k];
    }

最难理解的地方的一个我的理解,有不对的欢迎指出。

复杂度分析:

分析KMP复杂度,那就直接看KMP函数。

int KMP(char *str, int slen, char *ptr, int plen)
{
  int *next = new int[plen];
  cal_next(ptr, next, plen);//计算next数组
  int k = -1;
  for (int i = 0; i < slen; i++)
  {
    while (k >-1&& ptr[k + 1] != str[i])//ptr和str不匹配,且k>-1(表示ptr和str有部分匹配)
      k = next[k];//往前回溯
    if (ptr[k + 1] == str[i])
      k = k + 1;
    if (k == plen-1)//说明k移动到ptr的最末端
    {
      //cout << "在位置" << i-plen+1<< endl;
      //k = -1;//重新初始化,寻找下一个
      //i = i - plen + 1;//i定位到该位置,外层for循环i++可以继续找下一个(这里默认存在两个匹配字符串可以部分重叠),感谢评论中同学指出错误。
      return i-plen+1;//返回相应的位置
    }
  }
  return -1;
}

这玩意真的不好解释,简单说一下:

从代码解释复杂度是一件比较难的事情,我们从

这个图来解释。

我们可以看到,匹配串每次往前移动,都是一大段一大段移动,假设匹配串里不存在重复的前缀和后缀,即next的值都是-1,那么每次移动其实就是一整个匹配串往前移动m个距离。然后重新一一比较,这样就比较m次,概括为,移动m距离,比较m次,移到末尾,就是比较n次,O(n)复杂度。 假设匹配串里存在重复的前缀和后缀,我们移动的距离相对小了点,但是比较的次数也小了,整体代价也是O(n)。
所以复杂度是一个线性的复杂度。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • KMP算法精解及其Python版的代码示例

    KMP算法是经典的字符串匹配算法,解决从字符串S,查找模式字符串M的问题.算法名称来源于发明者Knuth,Morris,Pratt. 假定从字符串S中查找M,S的长度ls,M的长度lm,且(ls > lm). 朴素的字符串查找方法 从字符串S的第一个字符开始与M进行比较,如果匹配失败.从下一字符开始,重新比较.指导第 (ls - lm) 个字符. 这种方法容易想到并且容易理解,效率不高. 问题在于每次匹配失败后,移动的步伐固定为 1,其实步子可以迈得再大一些. KMP的字符串查找方法 假定在模式

  • KMP算法的C#实现方法

    本文实例简述了KMP算法的C#实现方法,分享给大家供大家参考.具体如下: 具体思路为:next函数求出模式串向右滑动位数,再将模式串的str的next函数值 存入数组next. 具体实现代码如下: static void GetNextVal(string str, int [] next) { int i = 0; int j = -1; next[0] = -1; while (i < str.Length - 1) { if (j == -1 || str[i] == str[j]) {

  • 基于KMP算法JavaScript的实现方法分析

    算法的核心是部分匹配表和回退算法,部分匹配表的实现如下: 复制代码 代码如下: function kmpGetStrPartMatchValue(str) {    var prefix = [];    var suffix = [];    var partMatch = [];    for(var i=0,j=str.length;i<j;i++){        var newStr = str.substring(0,i+1);        if(newStr.length ==

  • C语言实现字符串匹配KMP算法

    字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"? 下面的的KMP算法的解释步骤 1. 首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较.因为B与A不匹配,所以搜索词后移一位. 2. 因为B与A不匹配,搜索词再往后移. 3. 就这样,直到字符

  • C语言中实现KMP算法的实例讲解

    一般的算法为什么这么低效呢?那是因为主串指针回溯情况过多: 主串指针如果不回溯的话,速度就会加快,那我们就会想: 如何让主串指针不回溯? KMP算法就是解决了这个问题,所以速度变得更快速了. 它是这样子的: 用一个数组:next[] 求得失配时的位置,然后保存下来. 要说清楚KMP算法,可以从朴素的模式匹配算法说起.  朴素的模式匹配算法比较容易理解,其实现如下 int Index(char s[], char p[], int pos) { int i, j, slen, plen; i =

  • python实现的二叉树算法和kmp算法实例

    主要是:前序遍历.中序遍历.后序遍历.层级遍历.非递归前序遍历.非递归中序遍历.非递归后序遍历 复制代码 代码如下: #!/usr/bin/env python#-*- coding:utf8 -*- class TreeNode(object):    def __init__(self, data=None, left=None, right=None):        self.data = data        self.left = left        self.right =

  • JavaScript中数据结构与算法(五):经典KMP算法

    KMP算法和BM算法 KMP是前缀匹配和BM后缀匹配的经典算法,看得出来前缀匹配和后缀匹配的区别就仅仅在于比较的顺序不同 前缀匹配是指:模式串和母串的比较从左到右,模式串的移动也是从 左到右 后缀匹配是指:模式串和母串的的比较从右到左,模式串的移动从左到右. 通过上一章显而易见BF算法也是属于前缀的算法,不过就非常霸蛮的逐个匹配的效率自然不用提了O(mn),网上蛋疼的KMP是讲解很多,基本都是走的高大上路线看的你也是一头雾水,我试图用自己的理解用最接地气的方式描述 KMP KMP也是一种优化版的

  • 详解小白之KMP算法及python实现

    在看子串匹配问题的时候,书上的关于KMP的算法的介绍总是理解不了.看了一遍代码总是很快的忘掉,后来决定好好分解一下KMP算法,算是给自己加深印象. 在将KMP字串匹配问题的时候,我们先来回顾一下字串匹配的暴力解法: 假设字符串str为: "abcgbabcdh",  字串substr为: "abcd" 从第一个字符开始比较,显然两个字符串的第一个字符相等('a'=='a'),然后比较第二个字符也相等('b'=='b'),继续下去,我们发现第4个字符不相等了('g'!

  • 扩展KMP算法(Extend KMP)

    扩展kmp既是求模式串和主串的每一个后缀的最长公共前缀 即令s[i]表示主串中以第i个位置为起始的后缀,则B[i]表示s[i]和模式串的最长公共前缀 显然KMP是求s[i]=模式串长度的情况,所以,扩展KMP是对KMP的拓展 像求KMP的next数组一样,我们先求A[i],表示模式串的后缀和模式串的最长公共前缀 然后再利用A[i]求出B[i] 说明一下A的求法,B同理 现在我们要求A[i],且A[1]---A[i-1]已经求出,设k,且1<=k<=i-1,并满足k+A[k]最大 所以T[k]-

  • C++ 数据结构之kmp算法中的求Next()函数的算法

    C++ 数据结构之kmp算法中的求Next()函数的算法 实例代码: #include <iostream> using namespace std; void preKmp(char *c, int m, int Next[]) { int i=1,j=-1; Next[0]=-2; while(i<m) { if(j==-2) { Next[i]=-1; i++; j=-1; } ++j; if(i==m) return; if(c[i]==c[j]) { Next[i]=j; ++

  • C语言kmp算法简单示例和实现原理探究

    以前看过kmp算法,当时接触后总感觉好深奥啊,抱着数据结构的数啃了一中午,最终才大致看懂,后来提起kmp也只剩下"奥,它是做模式匹配的"这点干货.最近有空,翻出来算法导论看看,原来就是这么简单(下不说程序实现,思想很简单). 模式匹配的经典应用:从一个字符串中找到模式字串的位置.如"abcdef"中"cde"出现在原串第三个位置.从基础看起 朴素的模式匹配算法 A:abcdefg  B:cde 首先B从A的第一位开始比较,B++==A++,如果全

  • java 中模式匹配算法-KMP算法实例详解

    java 中模式匹配算法-KMP算法实例详解 朴素模式匹配算法的最大问题就是太低效了.于是三位前辈发表了一种KMP算法,其中三个字母分别是这三个人名的首字母大写. 简单的说,KMP算法的对于主串的当前位置不回溯.也就是说,如果主串某次比较时,当前下标为i,i之前的字符和子串对应的字符匹配,那么不要再像朴素算法那样将主串的下标回溯,比如主串为"abcababcabcabcabcabc",子串为"abcabx".第一次匹配的时候,主串1,2,3,4,5字符都和子串相应的

随机推荐