详解Python数据结构与算法中的顺序表

目录
  • 0. 学习目标
  • 1. 线性表的顺序存储结构
    • 1.1 顺序表基本概念
    • 1.2 顺序表的优缺点
    • 1.3 动态顺序表
  • 2. 顺序表的实现
    • 2.1 顺序表的初始化
    • 2.2 获取顺序表长度
    • 2.3 读取指定位置元素
    • 2.4 查找指定元素
    • 2.5 在指定位置插入新元素
    • 2.6 删除指定位置元素
    • 2.7 其它一些有用的操作
  • 3. 顺序表应用
    • 3.1 顺序表应用示例
    • 3.2 利用顺序表基本操作实现复杂操作

0. 学习目标

线性表在计算机中的表示可以采用多种方法,采用不同存储方法的线性表也有着不同的名称和特点。线性表有两种基本的存储结构:顺序存储结构和链式存储结构。本节将介绍顺序存储结构的特点以及各种基本运算的实现。
通过本节学习,应掌握以下内容:

线性表的顺序存储及实现方法

顺序表基本操作的实现

利用顺序表的基本操作实现复杂算法

1. 线性表的顺序存储结构

1.1 顺序表基本概念

线性表的顺序存储是把线性表的数据元素按逻辑次序依次存放在一组连续的存储单元中,即逻辑结构上相邻的两个数据元素存储在计算机内的物理存储位置也是相邻的,这种存储方法为整个线性表分配一整个内存块保存线性表的元素,借助数据元素在计算机内的物理位置表示线性表中数据元素之间的逻辑关系。采用顺序存储结构表示的线性表简称顺序表 (Sequential List)。

顺序表具有以下两个基本特点:

顺序表的所有元素所占的存储空间是连续的;

顺序表中各数据元素在存储空间中是按逻辑顺序依次存放的。

由于线性表的所有数据元素属于同一数据类型,所以每个元素占用的空间(字节数)相同。因此,要在此结构中查找某一个元素是很方便的,即只要知道顺序表首地址和每个数据元素在内存所占字节的大小,就可求出第 i ii 个数据元素的地址。通过使用特定元素的序号,可以在常数时间内访问数据元素,因此可以说顺序表具有按数据元素的序号随机存取的特点。

假设线性表中的第一个数据元素的存储地址(即顺序表第一个字节的地址,也称首地址)为id(a1),每一个数据元素占k个字节,则线性表中第i个元素ai在计算机中的存储地址为:

id(ai)=id(a1)+(i−1)×k (1≤i≤n)

从上式可以看出,访问顺序表数据元素的过程只需要一次乘法和一次加法。由于这两个操作只需要常数时间,因此可以说顺序表访问可以在常数时间内进行。

也就是说,顺序表中的每一个数据元素在计算机存储空间中的存储地址由该元素在线性表中的序号惟一确定。假设有一长度为n的线性表 (a1,a2,...,an),那么其在计算机中的顺序存储结构可以用下图表示:

1.2 顺序表的优缺点

顺序表的优点:

  • 简单易用
  • 可以快速访问元素

顺序表的缺点:

  • 固定大小:顺序表的大小是静态的(使用前需要指定顺序表大小)
  • 基于位置插入元素较复杂:要在给定位置插入元素,可能需要移动现有元素来创建一个空位置,以便在所需位置插入新元素;如果要在开头添加元素,那么移位操作的开销就更大了

为了解决顺序表具有固定大小的缺陷,动态顺序表的概念被提出。

1.3 动态顺序表

动态顺序表(也称为可增长顺序表、可调整大小的顺序表、动态表)是一种随机访问、大小可变的顺序表数据结构,允许添加或删除元素,Python 内置的 list 就是一种动态顺序表。

实现动态顺序表的一种简单方法是从一些固定大小的顺序表开始。一旦该顺序表变满,就创建高于原始顺序表大小的新顺序表;同样,如果顺序表中的元素过少,则将缩小顺序表大小。

接下来,为了更好的理解顺序表,我们将使用 Python 实现顺序表。

2. 顺序表的实现

在具体实现时,使用 Python 中的列表来对应连续的存储空间。设最多可存储 max_size 个元素,为保存线性表的长度需定义一个整型变量 num_items。由于,Python 列表中索引从 0 开始,因此,线性表的第i(1≤i≤n)个元素存放在列表索引为i−1的列表元素中,为保持一致性,我们实现的顺序表的序号同样从 0 开始(也可以根据需要索引从 1 开始,只需要进行简单修改)。

2.1 顺序表的初始化

顺序表的初始化需要三部分信息:items 列表用于存储数据元素,max_size 用于存储 items 列表的最大长度,以及 num_items 用于记录 items 列表的当前使用的位置,即顺序表中的数据元素数量。

class SequentialList:
    def __init__(self, max_size=10):
        self.items = [None] * max_size
        self.num_items = 0
        self.max_size = max_size

初始化代码通过创建一个包含 10 个 None 值的列表来构建一个 SequentialList 对象,内部 items 列表的初始大小 max_size 默认为 10,也可以传递更大的顺序表大小作为初始大小,该列表也可以在需要时会动态增长。创建 SequentialList 对象的时间复杂度为O(1)。

如下图所示,是一个包含 5 个数据元素的 SequentialList 对象:

2.2 获取顺序表长度

这里所说的顺序表长度,指顺序表中数据元素的个数,由于我们在顺序表中使用 num_items 跟踪顺序表中的项数,求取顺序表长度只需要重载 __len__ 从对象返回 num_items 的值,因此时间复杂度为O(1):

    def __len__(self):
        return self.num_items

如果在 SequentialList 对象中没有跟踪列表的项数,那么计算顺序表长度的时间复杂度为O(n)。

2.3 读取指定位置元素

为了实现读取顺序表指定位置元素的操作,我们将重载 __getitem__ 操作,操作的复杂度为O(1)。同时,我们希望确保索引在可接受的索引范围内,否则将像内置列表类一样引发 IndexError 异常:

    def __getitem__(self, index):
        if index >= 0 and index < self.num_items:
            return self.items[index]
        raise IndexError('SequentialList index out of range')

我们也可以实现修改指定位置元素的操作,只需要重载 __setitem__ 操作,其复杂度同样为O(1):

    def __setitem__(self, index, val):
        if index >= 0 and index < self.num_items:
            self.items[index] = val
            return
        raise IndexError("SequentialList assignment index out of range")

2.4 查找指定元素

要确定值为 x 的元素在顺序表中的位置,需要依次比较各元素。当查询到第一个满足条件的数据元素时,返回其下标,否则像内置列表类一样引发 ValueError 异常,表示查找失败。

    def locate(self, item):
        for i in range(self.num_items):
            if self.items[i] == item:
                return i
        raise ValueError("{} is not in sequential list".format(item))

在查找过程中,数据元素比较次数的平均值为(n+1)/2,因此时间复杂度为O(n)。

2.5 在指定位置插入新元素

实现在指定位置插入新元素之前,我们首先看下如何在顺序表末尾追加元素。追加时,如果有空闲空间,只需要在 self.items 列表的末尾再添加一项,而当 self.items 列表填满时,我们必须增加 self.items 列表的大小,为需要追加的新元素创建空间,创建的新 self.items 大小与 self.items 的当前长度成正比。

为了使追加操作在O(1)时间内运行,我们不能在每次需要更多空间时仅增加一个空闲位置,事实证明,每次增加 25% 的空间就足以保证O(1)复杂度。选择增加空间的百分比并不重要,每次增加 10% 或100%的空间,同样可以使时间复杂度为O(1)。这里选择 25% 的原因是可以在不占用太多计算机内存的情况下多次使用追加操作扩展列表。

    def __alloc(self):
        new_size = (self.max_size // 4) + self.max_size + 1
        new_items = [None] * new_size
        for i in range(self.num_items):
            new_items[i] = self.items[i]

        self.items = new_items
        self.max_size = new_size

    def append(self, item):
        if self.num_items == self.max_size:
            self.__alloc()

        self.items[self.num_items] = item
        self.num_items += 1

要插入新数据元素到顺序表中,必须为新元素腾出空间,下图表示顺序表中的列表在进行插入操作前后,其数据元素在列表中下标的变化情况:

完成如上的插入操作要经过如下步骤:

1.线性表中指定位置及其之后的元素,依次向后移动一个位置,空出索引为i的位置

2.数据元素 x 插入到第i个存储位置

3.插入结束后使线性表的长度增加 1

需要注意的是,如果线性表空间已满,首先需要分配新的空间。如果提供的索引大于列表的大小,则将新项 x 附加到列表的末尾。插入时间元素操作的时间复杂度为O(n)。

    def insert(self, index, item):
        if self.num_items == self.max_size:
            self.__alloc()
        if index < self.num_items and index >= 0:
            for j in range(self.num_items-1, index-1, -1):
                self.items[j+1] = self.items[j]
            self.items[index] = item
            self.num_items += 1
        elif index >= self.num_items:
            self.append(item)
        else:
            raise IndexError("SequentialList assignment index out of range")

2.6 删除指定位置元素

当删除列表中特定索引处的数据元素时,我们必须将其之后的所有元素向下移动以保证内部列表中没有无效数据。下图表示一个顺序表在进行删除运算前后,其数据元素下标的变化:

在线性表上完成上述操作需要以下步骤:

1.在线性表中删除下标为i的元素,从索引为i+1到n−1的元素依次向前移动依次向前移动一个位置,将所删除的索引为i的数据元素ai+1覆盖掉,从而保证逻辑上相邻的元素物理位置也相邻

2.修改顺序表长度,使其减 1

为了实现删除顺序表指定位置元素的操作,我们将重载 __getitem__ 操作,在顺序表上删除数据元素时大约需要移动表中一半的元素,显然该算法的时间复杂度为O(n)。

    def __delitem__(self, index):
        for i in range(index, self.num_items-1):
            self.items[i] = self.items[i+1]
        self.num_items -= 1

2.7 其它一些有用的操作

为了更好的使用顺序表,接下来将介绍其它一些很有用的操作。
例如,将顺序表转换为字符串以便进行打印,使用 str 函数调用对象上的 __str__ 方法可以创建适合打印的字符串表示,__str__ 的返回结果的可读性很强:

    def __str__(self):
        s = '['
        for i in range(self.num_items):
            s += repr(self.items[i])
            if i < self.num_items - 1:
                s += ', '
        s += ']'
        return s

我们也可以重载成员资格函数 __contain__ 来检查一个数据元素是否是顺序表中的元素之一。这样做的唯一方法是按顺序检查顺序表中的每个数据元素。如果找到该项目,则返回 True,否则返回 False 这种搜索方法称为线性搜索,之所以这样命名是因为它具有O(n)的时间复杂度:

    def __contains__(self, item):
        for i in range(self.num_items):
            if self.items[i] == item:
                return True
        return False

检查两个顺序表的相等性首先需要两个顺序表的类型相同以及两个顺序表必须具有相同的长度。在满足这两个先决条件的情况下,如果两个表中的所有元素都相等,则我们可以说两个顺序表相等,相等测试的时间复杂度为O(n),我们重载 __eq__ 方法实现此操作:

    def __eq__(self, another):
        if type(another) != type(self) or self.num_items != another.num_items:
            return False
        for i in range(self.num_items):
            if self.items[i] != another.items[i]:
                return False
        return True

3. 顺序表应用

接下来,我们首先对上述实现的顺序表进行测试,以验证操作的有效性,然后利用实现的基本操作来实现更复杂的算法。

3.1 顺序表应用示例

首先初始化一个顺序表 sample_sqlist,并在其中追加若干元素:

sample_sqlist = SequentialList()
sample_sqlist.append(11)
sample_sqlist.append(22)
sample_sqlist.append(33)

我们可以直接打印顺序表中的数据元素、顺序表长度等信息:

print('顺序表数据元素为:', sample_sqlist)
print('顺序表长度:', len(sample_sqlist))
print('顺序表中第0个数据元素:', sample_sqlist[0])
# 修改数据元素
sample_sqlist[1] = 2022
print('顺序表数据元素为:', sample_sqlist)

以上代码输出如下:

顺序表数据元素为: [11, 22, 33]

顺序表长度: 3

顺序表中第0个数据元素: 11

顺序表数据元素为: [11, 2022, 33]

接下来,我们将演示在指定位置添加/删除元素、以及如何查找指定元素等:

print('在顺序表位置1处添加元素2021')
sample_sqlist.insert(1, 2021)
print('添加元素后,顺序表数据元素为:', sample_sqlist)
print('删除顺序表位置2处元素')
del(sample_sqlist[2])
print('删除数据后,顺序表数据元素为:', sample_sqlist)
print('元素11的索引为{}'.format(sample_sqlist.locate(11)))
print('11在顺序表中?', 11 in sample_sqlist)
print('22在顺序表中?', 22 in sample_sqlist)

以上代码输出如下:

在顺序表位置1处添加元素2021

添加元素后,顺序表数据元素为: [11, 2021, 2022, 33]

删除顺序表位置2处元素

删除数据后,顺序表数据元素为: [11, 2021, 33]

元素11的索引为0

11在顺序表中? True

22在顺序表中? False

3.2 利用顺序表基本操作实现复杂操作

[1] 利用顺序表的基本操作,合并两个顺序表:

def add_sqlist(sqlist1, sqlist2):
    result = SequentialList(max_size=sqlist1.num_items+sqlist2.num_items)
    for i in range(sqlist1.num_items):
        result.append(sqlist1[i])
    for i in range(sqlist2.num_items):
        result.append(sqlist2[i])
    return result
# 算法测试
sqlist1 = SequentialList()
sqlist2 = SequentialList()
for i in range(10):
    sqlist1.append(i)
    sqlist2.append(i*5)
print('顺序表1:', sqlist1, '顺序表2:', sqlist2)
# 合并顺序表
result = add_sqlist(sqlist1, sqlist2)
print('合并顺序表:', result)

可以看到合并两个顺序表的时间复杂度为O(n),程序输出结果如下:

顺序表1: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 顺序表2: [0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

合并顺序表: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

[2] 利用顺序表 sqlist1 和 sqlist2 中公共数据元素生成新顺序表:

def commelem(sqlist1, sqlist2):
    result = SequentialList()
    for i in range(sqlist1.num_items):
        if sqlist1[i] in sqlist2 and sqlist1[i] not in result:
            result.append(sqlist1[i])
    return result
# 算法测试
sqlist1 = SequentialList()
sqlist2 = SequentialList()
for i in range(5):
    sqlist1.append(i*2)
    sqlist1.append(i)
    sqlist2.append(i*3)
print('顺序表1:', sqlist1, '顺序表2:', sqlist2)
# 合并顺序表
result = commelem(sqlist1, sqlist2)
print('两顺序表中的公共元素:', result)

可以看到算法的时间复杂度为O(n2),程序输出结果如下:

合并顺序表: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

顺序表1: [0, 0, 2, 1, 4, 2, 6, 3, 8, 4] 顺序表2: [0, 3, 6, 9, 12]

两顺序表中的公共元素: [0, 6, 3]

到此这篇关于详解Python数据结构与算法中的顺序表的文章就介绍到这了,更多相关Python顺序表内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 什么是Python中的顺序表

    1.顺序表介绍 顺序表是最简单的一种线性结构,逻辑上相邻的数据在计算机内的存储位置也是相邻的,可以快速定位第几个元素,中间不允许有空,所以插入.删除时需要移动大量元素.顺序表可以分配一段连续的存储空间Maxsize,用elem记录基地址,用length记录实际的元素个数,即顺序表的长度 上图1表示的是顺序表的基本形式,数据元素本身连续存储,每个元素所占的存储单元大小固定相同,元素的下标是其逻辑地址,而元素存储的物理地址(实际内存地址)可以通过存储区的起始地址Loc (e0)加上逻辑地址(第i个元

  • python实现顺序表的简单代码

    顺序表即线性表的顺序存储结构.它是通过一组地址连续的存储单元对线性表中的数据进行存储的,相邻的两个元素在物理位置上也是相邻的.比如,第1个元素是存储在线性表的起始位置LOC(1),那么第i个元素即是存储在LOC(1)+(i-1)*sizeof(ElemType)位置上,其中sizeof(ElemType)表示每一个元素所占的空间. 下面是顺序表的python实现: #coding:utf-8 ''' author:xzfreewind ''' class SeqList(object): def

  • Python中顺序表原理与实现方法详解

    本文实例讲述了Python中顺序表原理与实现方法.分享给大家供大家参考,具体如下: Python中的顺序表 Python中的list和tuple两种类型采用了顺序表的实现技术,具有顺序表的所有性质. tuple是不可变类型,即不变的顺序表,因此不支持改变其内部状态的任何操作,而其他方面,则与list的性质类似. list的基本实现技术 Python标准类型list就是一种元素个数可变的线性表,可以加入和删除元素,并在各种操作中维持已有元素的顺序(即保序),而且还具有以下行为特征: 基于下标(位置

  • Python中顺序表的实现简单代码分享

    顺序表python版的实现(部分功能未实现) 结果展示: 代码示例: #!/usr/bin/env python # -*- coding:utf-8 -*- class SeqList(object): def __init__(self, max=8): self.max = max #创建默认为8 self.num = 0 self.date = [None] * self.max #list()会默认创建八个元素大小的列表,num=0,并有链接关系 #用list实现list有些荒谬,全当

  • Python数据结构之顺序表的实现代码示例

    顺序表即线性表的顺序存储结构.它是通过一组地址连续的存储单元对线性表中的数据进行存储的,相邻的两个元素在物理位置上也是相邻的.比如,第1个元素是存储在线性表的起始位置LOC(1),那么第i个元素即是存储在LOC(1)+(i-1)*sizeof(ElemType)位置上,其中sizeof(ElemType)表示每一个元素所占的空间. 追加直接往列表后面添加元素,插入是将插入位置后的元素全部往后面移动一个位置,然后再将这个元素放到指定的位置,将长度加1删除是将该位置后面的元素往前移动,覆盖该元素,然

  • 详解Python数据结构与算法中的顺序表

    目录 0. 学习目标 1. 线性表的顺序存储结构 1.1 顺序表基本概念 1.2 顺序表的优缺点 1.3 动态顺序表 2. 顺序表的实现 2.1 顺序表的初始化 2.2 获取顺序表长度 2.3 读取指定位置元素 2.4 查找指定元素 2.5 在指定位置插入新元素 2.6 删除指定位置元素 2.7 其它一些有用的操作 3. 顺序表应用 3.1 顺序表应用示例 3.2 利用顺序表基本操作实现复杂操作 0. 学习目标 线性表在计算机中的表示可以采用多种方法,采用不同存储方法的线性表也有着不同的名称和特

  • 详解python数据结构和算法

    1.删除序列相同元素并保持顺序 如果仅仅就是想消除重复元素,通常可以简单的构造一个集合,利用集合之间元素互不相同的特性就可以消除重复,但是这种方法生成的结果中元素的位置会被打乱.下面是我们的解决方案: def dedupe(items, key=None): seen = set() for item in items: val = item if key is None else key(item) if val not in seen: yield item seen.add(val) 主要

  • 详解python 支持向量机(SVM)算法

    相比于逻辑回归,在很多情况下,SVM算法能够对数据计算从而产生更好的精度.而传统的SVM只能适用于二分类操作,不过却可以通过核技巧(核函数),使得SVM可以应用于多分类的任务中. 本篇文章只是介绍SVM的原理以及核技巧究竟是怎么一回事,最后会介绍sklearn svm各个参数作用和一个demo实战的内容,尽量通俗易懂.至于公式推导方面,网上关于这方面的文章太多了,这里就不多进行展开了~ 1.SVM简介 支持向量机,能在N维平面中,找到最明显得对数据进行分类的一个超平面!看下面这幅图: 如上图中,

  • 详解python数据结构之栈stack

    前言 栈(Stack)是一种运算受限的线性表. 按照先进后出(FILO,First In Last Out)的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶.栈只能在一端进行插入和删除操作. 文章内容包含: (1)栈的基本格式 (2)压栈 push_stack (3)出栈 pop_stack (4)取栈顶 peek_stack 一.栈的基本格式 class Stack(): def __init__ (self,size): self.size = size #栈空间大小 self.to

  • 详解python数据结构之队列Queue

    一.前言 队列Queue是一种先进先出(FIFO,First In First Out)的线性表.允许一端进行插入(rear),对应的另一段进行删除(front). 本篇包含以下内容: (1)Queue的基本格式 (2)入队列en_queue (3)删除数据函数 de_queue 二.Queue的基本格式 class Queue(): def __init__(self,size): self.size = size self.front = -1 #设置front初始值,每出队列一个数据就加

  • Python数据结构与算法中的栈详解

    目录 0.学习目标 1.栈的基本概念 1.1栈的基本概念 1.2栈抽象数据类型 1.3栈的应用场景 2.栈的实现 2.1顺序栈的实现 2.1.1栈的初始化 2.1.2求栈长 2.1.3判栈空 2.1.4判栈满 2.1.5入栈 2.1.6出栈 2.1.7求栈顶元素 2.2链栈的实现 2.2.1栈结点 2.2.2栈的初始化 2.2.3求栈长 2.2.4判栈空 2.2.5入栈 2.2.6出栈 2.3栈的不同实现对比 3.栈应用 3.1顺序栈的应用 3.2链栈的应用 3.3利用栈基本操作实现复杂算法 总

  • 详解java数据结构与算法之双链表设计与实现

    在单链表分析中,我们可以知道每个结点只有一个指向后继结点的next域,倘若此时已知当前结点p,需要查找其前驱结点,那么就必须从head头指针遍历至p的前驱结点,操作的效率很低,因此如果p有一个指向前驱结点的next域,那效率就高多了,对于这种一个结点中分别包含了前驱结点域pre和后继结点域next的链表,称之为双链表.本篇我们将从以下结点来分析双链表 双链表的设计与实现 双链表的主要优点是对于任意给的结点,都可以很轻易的获取其前驱结点或者后继结点,而主要缺点是每个结点需要添加额外的next域,因

  • Python数据结构与算法中的栈详解(2)

    目录 匹配括号 匹配符号 总结 匹配括号 接下来,我们使用栈解决实际的计算机科学问题.​ 比如我们都写过这样所示的算术表达式, ( 5 + 6 ) ∗ ( 7 + 8 ) / ( 4 + 3 ) (5 + 6) * (7 + 8) / (4 + 3) (5+6)∗(7+8)/(4+3),其中的括号用来改变计算顺序,或提升运算优先级.​ 匹配括号是指每一个左括号都有与之对应的一个右括号,并且括号对有正确的嵌套关系. 正确的嵌套关系: ( ( ) ( ) ( ) ( ) ) (()()()()) (

  • Python数据结构与算法中的栈详解(3)

    目录 前序.中序和后序表达式是什么? 我们为什么要学习前/后序表达式? 从中序向前序和后序转换 用Python实现从中序表达式到后序表达式的转换​ 计算后序表达式 总结 前序.中序和后序表达式是什么? 对于像B∗C 这样的算术表达式,可以根据其形式来正确地运算.在B∗C 的例子中,由于乘号出现在两个变量之间,因此我们知道应该用变量 B 乘以变量 C .​ 因为运算符出现在两个操作数的中间 ,所以这种表达式被称作中序表达式 .​ 来看另一个中序表达式的例子:A+B∗C.虽然运算符 “ + ” 和

  • Python数据结构与算法中的栈详解(1)

    目录 什么是栈 构建一个栈 总结 什么是栈 栈有时也被称作“下推栈”.它是有序集合,添加操作和移除操作总发生在同一端,即栈的 “顶端”,栈的另一端则被称为 “底端”.所以最新添加的元素将被最先移除,而且栈中的元素离底端越近,代表其在栈中的时间越长. 这种排序原则被称作LIFO(last-in first-out),即后进先出.它提供了一种基于在集合中的时间来排序的方式. 最近添加的元素靠近顶端,旧元素则靠近底端. 栈的例子在日常生活中比比皆是.几乎所有咖啡馆都有一个由托盘或盘子构成的栈,你可以从

随机推荐