pandas 对series和dataframe进行排序的实例

本问主要写根据索引或者值对series和dataframe进行排序的实例讲解

代码:

#coding=utf-8
import pandas as pd
import numpy as np
#以下实现排序功能。
series=pd.Series([3,4,1,6],index=['b','a','d','c'])
frame=pd.DataFrame([[2,4,1,5],[3,1,4,5],[5,1,4,2]],columns=['b','a','d','c'],index=['one','two','three'])
print frame
print series
print 'series通过索引进行排序:'
print series.sort_index()
print 'series通过值进行排序:'
print series.sort_values()
print 'dataframe根据行索引进行降序排序(排序时默认升序,调节ascending参数):'
print frame.sort_index(ascending=False)
print 'dataframe根据列索引进行排序:'
print frame.sort_index(axis=1)
print 'dataframe根据值进行排序:'
print frame.sort_values(by='a')
print '通过多个索引进行排序:'
print frame.sort_values(by=['a','c'])

实验结果:

  b a d c
one 2 4 1 5
two 3 1 4 5
three 5 1 4 2

b 3
a 4
d 1
c 6
dtype: int64

series通过索引进行排序:

a 4
b 3
c 6
d 1
dtype: int64

series通过值进行排序:

d 1
b 3
a 4
c 6
dtype: int64

dataframe根据行索引进行降序排序(排序时默认升序,调节ascending参数):

  b a d c
two 3 1 4 5
three 5 1 4 2
one 2 4 1 5

dataframe根据列索引进行排序:

  a b c d
one 4 2 5 1
two 1 3 5 4
three 1 5 2 4

dataframe根据值进行排序:

  b a d c
two 3 1 4 5
three 5 1 4 2
one 2 4 1 5

通过两个索引进行排序:

  b a d c
three 5 1 4 2
two 3 1 4 5
one 2 4 1 5
[Finished in 1.0s]

以上这篇pandas 对series和dataframe进行排序的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 浅谈Pandas:Series和DataFrame间的算术元素

    如下所示: import numpy as np import pandas as pd from pandas import Series,DataFrame 一.Series与Series s1 = Series([1,3,5,7],index=['a','b','c','d']) s2 = Series([2,4,6,8],index=['a','b','c','e']) 索引对齐项相加,不对齐项的值取NaN s1+s2 1 a 3.0 b 7.0 c 11.0 d NaN e NaN d

  • pandas把dataframe转成Series,改变列中值的类型方法

    使用 pd.Series把dataframe转成Series ts = pd.Series(df['Value'].values, index=df['Date']) 使用astype改变列中的值的类型,注意前面要有np df['列名'] = df['列名'].astype(np.int64) 以上这篇pandas把dataframe转成Series,改变列中值的类型方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: python panda

  • Pandas DataFrame 取一行数据会得到Series的方法

    Pandas DataFrame 取一行数据会得到Series的方法 如题,想要取如下dataframe的一行数据,以为得到的还是dataframe lista = [1, 3, 7,4,0] listb = [3, 3, 4,4,5] listc = [3, 3, 4,4,6] df1 = pd.DataFrame({'col1':lista,'col2':listb,'colb':listc}) print(df1) print(df1.loc[0,:]) print(type(df1.lo

  • Pandas:Series和DataFrame删除指定轴上数据的方法

    如下所示: import numpy as np import pandas as pd from pandas import Series,DataFrame 一.drop方法:产生新对象 1.Series o = Series([1,3,4,7],index=['d','c','b','a']) print(o.drop(['d','b'])) c 3 a 7 dtype: int64 2.DataFrame data = {'水果':['苹果','梨','草莓'], '数量':[3,2,5

  • 对pandas中两种数据类型Series和DataFrame的区别详解

    1. Series相当于数组numpy.array类似 s1=pd.Series([1,2,4,6,7,2]) s2=pd.Series([4,3,1,57,8],index=['a','b','c','d','e']) print s2 obj1=s2.values # print obj1 obj2=s2.index # print obj2 # print s2[s2>4] # print s2['b'] 1.Series 它是有索引,如果我们未指定索引,则是以数字自动生成. 下面是一些例

  • python pandas 对series和dataframe的重置索引reindex方法

    reindex更多的不是修改pandas对象的索引,而只是修改索引的顺序,如果修改的索引不存在就会使用默认的None代替此行.且不会修改原数组,要修改需要使用赋值语句. series.reindex() import pandas as pd import numpy as np obj = pd.Series(range(4), index=['d', 'b', 'a', 'c']) print obj d 0 b 1 a 2 c 3 dtype: int64 print obj.reinde

  • pandas 对series和dataframe进行排序的实例

    本问主要写根据索引或者值对series和dataframe进行排序的实例讲解 代码: #coding=utf-8 import pandas as pd import numpy as np #以下实现排序功能. series=pd.Series([3,4,1,6],index=['b','a','d','c']) frame=pd.DataFrame([[2,4,1,5],[3,1,4,5],[5,1,4,2]],columns=['b','a','d','c'],index=['one','

  • pandas基础 Series与Dataframe与numpy对二进制文件输入输出

    目录 Series Python numpy对二进制文件输入输出 Series series是一种一维的数组型对象,它包含了一个值序列和一个数据标签 import pandas as pd import numpy as np  创建第一个series: s1=pd.Series([4,7,-5,3])#创建一个series,索引为默认值 print(s1) 通过简单的一个传入数组,就可以形成一个一维的数据表格 获取序列的值和标签序列,应该如何去做? 我们在想这样一个问题,这个序列标签是默认的0

  • 使用pandas对两个dataframe进行join的实例

    需求: 两个文件,一个文件为统计报表,里面含有手机号,另一个文件为手机号段归属地,含有手机号码前七位对应的地区.需要对统计报表进行处理,将手机号所在的归属地加入到统计报表中,使用pandas提供的join功能来实现,代码如下: #coding=utf-8 from pandas import Series,DataFrame import pandas as pd #reader1 = pd.read_csv('Dm_Mobile.txt',iterator=True,encoding="gb2

  • Pandas中Series和DataFrame的索引实现

    正文 在对Series对象和DataFrame对象进行索引的时候要明确这么一个概念:是使用下标进行索引,还是使用关键字进行索引.比如list进行索引的时候使用的是下标,而dict索引的时候使用的是关键字. 使用下标索引的时候下标总是从0开始的,而且索引值总是数字.而使用关键字进行索引,关键字是key里面的值,既可以是数字,也可以是字符串等. Series对象介绍: Series对象是由索引index和值values组成的,一个index对应一个value.其中index是pandas中的Inde

  • Pandas中Series的创建及数据类型转换

    目录 一.实战场景 二.主要知识点 三.菜鸟实战 1.创建 python 文件,用Numpy创建Series 2.转换Series的数据类型 四.补充 1.创建 python 文件,数据list,变成Pandas的Series对象 2.数据dict变成Pandas的Series对象 3.把Pandas的Series对象变成数据list 一.实战场景 实战场景:Pandas中Series的创建和数据类型转换,Series的创建和数据类型转换,Series 类似于一维数组与字典(map)数据结构的结

  • Pandas 对Dataframe结构排序的实现方法

    Dataframe结构放在numpy来看应该是二维矩阵的形式,每一列是一个特征,上面会有个列标题,每一行是一个样本. 对Dataframe结构的某一列进行排序方法如下: # 对df表中的user_id这一列进行排序,默认是从小到大排 df = df.sort_index(by='user_id') 对多列进行排序方法如下: # 对user_id,sku_id这两列进行排序 df = df.sort_index(by=['user_id', 'sku_id']) 以上这篇Pandas 对Dataf

随机推荐