python线程中同步锁详解

在使用多线程的应用下,如何保证线程安全,以及线程之间的同步,或者访问共享变量等问题是十分棘手的问题,也是使用多线程下面临的问题,如果处理不好,会带来较严重的后果,使用python多线程中提供Lock Rlock Semaphore Event Condition 用来保证线程之间的同步,后者保证访问共享变量的互斥问题

Lock & RLock:互斥锁 用来保证多线程访问共享变量的问题
Semaphore对象:Lock互斥锁的加强版,可以被多个线程同时拥有,而Lock只能被某一个线程同时拥有。
Event对象: 它是线程间通信的方式,相当于信号,一个线程可以给另外一个线程发送信号后让其执行操作。
Condition对象:其可以在某些事件触发或者达到特定的条件后才处理数据

1、Lock(互斥锁)

请求锁定 — 进入锁定池等待 — 获取锁 — 已锁定 — 释放锁

Lock(指令锁)是可用的最低级的同步指令。Lock处于锁定状态时,不被特定的线程拥有。Lock包含两种状态——锁定和非锁定,以及两个基本的方法。

可以认为Lock有一个锁定池,当线程请求锁定时,将线程至于池中,直到获得锁定后出池。池中的线程处于状态图中的同步阻塞状态。

构造方法:
Lock()

实例方法:
acquire([timeout]): 使线程进入同步阻塞状态,尝试获得锁定。
release(): 释放锁。使用前线程必须已获得锁定,否则将抛出异常。

if mutex.acquire():
 counter += 1
 print "I am %s, set counter:%s" % (self.name, counter)
  mutex.release()

2、RLock(可重入锁)

RLock(可重入锁)是一个可以被同一个线程请求多次的同步指令。RLock使用了“拥有的线程”和“递归等级”的概念,处于锁定状态时,RLock被某个线程拥有。拥有RLock的线程可以再次调用acquire(),释放锁时需要调用release()相同次数。

可以认为RLock包含一个锁定池和一个初始值为0的计数器,每次成功调用 acquire()/release(),计数器将+1/-1,为0时锁处于未锁定状态。

构造方法:
RLock()

实例方法:
acquire([timeout])/release(): 跟Lock差不多。

3、Semaphore(共享对象访问)

咱们再聊聊Semaphore ,说实话Semaphore是我最晚使用的同步锁,以前类似的实现,是我用Rlock实现的,相对来说有些绕,毕竟Rlock 是需要成对的锁定和开锁的》。。。

Semaphore管理一个内置的计数器,
每当调用acquire()时内置计数器-1;
调用release() 时内置计数器+1;
计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()。

直接上代码,我们把semaphore控制为3,也就是说,同时有3个线程可以用这个锁,剩下的线程也之只能是阻塞等待了…

#coding:utf-8
#blog xiaorui.cc
import time
import threading

semaphore = threading.Semaphore(3)

def func():
 if semaphore.acquire():
  for i in range(3):
   time.sleep(1)
   print (threading.currentThread().getName() + '获取锁')
  semaphore.release()
  print (threading.currentThread().getName() + ' 释放锁')

for i in range(5):
 t1 = threading.Thread(target=func)
 t1.start()

4、Event(线程间通信)

Event内部包含了一个标志位,初始的时候为false。
可以使用使用set()来将其设置为true;
或者使用clear()将其从新设置为false;
可以使用is_set()来检查标志位的状态;

另一个最重要的函数就是wait(timeout=None),用来阻塞当前线程,直到event的内部标志位被设置为true或者timeout超时。如果内部标志位为true则wait()函数理解返回。

import threading
import time

class MyThread(threading.Thread):
 def __init__(self, signal):
  threading.Thread.__init__(self)
  self.singal = signal

 def run(self):
  print "I am %s,I will sleep ..."%self.name
  self.singal.wait()
  print "I am %s, I awake..." %self.name

if __name__ == "__main__":
 singal = threading.Event()
 for t in range(0, 3):
  thread = MyThread(singal)
  thread.start()

 print "main thread sleep 3 seconds... "
 time.sleep(3)

 singal.set()

5、Condition(线程同步)

可以把Condition理解为一把高级的琐,它提供了比Lock, RLock更高级的功能,允许我们能够控制复杂的线程同步问题。threadiong.Condition在内部维护一个琐对象(默认是RLock),可以在创建Condigtion对象的时候把琐对象作为参数传入。Condition也提供了acquire, release方法,其含义与琐的acquire, release方法一致,其实它只是简单的调用内部琐对象的对应的方法而已。Condition还提供了如下方法(特别要注意:这些方法只有在占用琐(acquire)之后才能调用,否则将会报RuntimeError异常。):

Condition.wait([timeout]):

wait方法释放内部所占用的琐,同时线程被挂起,直至接收到通知被唤醒或超时(如果提供了timeout参数的话)。当线程被唤醒并重新占有琐的时候,程序才会继续执行下去。

Condition.notify():

唤醒一个挂起的线程(如果存在挂起的线程)。注意:notify()方法不会释放所占用的琐。

Condition.notify_all()
Condition.notifyAll()

唤醒所有挂起的线程(如果存在挂起的线程)。注意:这些方法不会释放所占用的琐。

对于Condition有个例子,大家可以观摩下。

from threading import Thread, Condition
import time
import random

queue = []
MAX_NUM = 10
condition = Condition()

class ProducerThread(Thread):
 def run(self):
  nums = range(5)
  global queue
  while True:
   condition.acquire()
   if len(queue) == MAX_NUM:
    print "Queue full, producer is waiting"
    condition.wait()
    print "Space in queue, Consumer notified the producer"
   num = random.choice(nums)
   queue.append(num)
   print "Produced", num
   condition.notify()
   condition.release()
   time.sleep(random.random())

class ConsumerThread(Thread):
 def run(self):
  global queue
  while True:
   condition.acquire()
   if not queue:
    print "Nothing in queue, consumer is waiting"
    condition.wait()
    print "Producer added something to queue and notified the consumer"
   num = queue.pop(0)
   print "Consumed", num
   condition.notify()
   condition.release()
   time.sleep(random.random())

ProducerThread().start()
ConsumerThread().start()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python多线程同步---文件读写控制方法

    1.实现文件读写的文件ltz_schedule_times.py #! /usr/bin/env python #coding=utf-8 import os def ReadTimes(): res = [] if os.path.exists('schedule_times.txt'): fp = open('schedule_times.txt', 'r') else: os.system('touch schedule_times.txt') fp = open('schedule_ti

  • Python多线程实现同步的四种方式

    临界资源即那些一次只能被一个线程访问的资源,典型例子就是打印机,它一次只能被一个程序用来执行打印功能,因为不能多个线程同时操作,而访问这部分资源的代码通常称之为临界区. 锁机制 threading的Lock类,用该类的acquire函数进行加锁,用realease函数进行解锁 import threading import time class Num: def __init__(self): self.num = 0 self.lock = threading.Lock() def add(s

  • 详解python多线程之间的同步(一)

    引言: 线程之间经常需要协同工作,通过某种技术,让一个线程访问某些数据时,其它线程不能访问这些数据,直到该线程完成对数据的操作.这些技术包括临界区(Critical Section),互斥量(Mutex),信号量(Semaphore),事件Event等. Event threading库中的event对象通过使用内部一个flag标记,通过flag的True或者False的变化来进行操作.      名称                                      含义 set( )

  • Python多线程编程(七):使用Condition实现复杂同步

    目前我们已经会使用Lock去对公共资源进行互斥访问了,也探讨了同一线程可以使用RLock去重入锁,但是尽管如此我们只不过才处理了一些程序中简单的同步现象,我们甚至还不能很合理的去解决使用Lock锁带来的死锁问题.所以我们得学会使用更深层的解决同步问题. Python提供的Condition对象提供了对复杂线程同步问题的支持.Condition被称为条件变量,除了提供与Lock类似的acquire和release方法外,还提供了wait和notify方法. 使用Condition的主要方式为:线程

  • python多线程同步实例教程

    前言 进程之间通信与线程同步是一个历久弥新的话题,对编程稍有了解应该都知道,但是细说又说不清.一方面除了工作中可能用的比较少,另一方面就是这些概念牵涉到的东西比较多,而且相对较深.网络编程,服务端编程,并发应用等都会涉及到.其开发和调试过程都不直观.由于同步通信机制的原理都是想通的,本文希通过望借助python实例来将抽象概念具体化. 阅读之前可以参考之前的一篇文章:python多线程与多进程及其区别,了解一下线程和进程的创建. python多线程同步 python中提供两个标准库thread和

  • 深入解析Python中的线程同步方法

    同步访问共享资源 在使用线程的时候,一个很重要的问题是要避免多个线程对同一变量或其它资源的访问冲突.一旦你稍不留神,重叠访问.在多个线程中修改(共享资源)等这些操作会导致各种各样的问题:更严重的是,这些问题一般只会在比较极端(比如高并发.生产服务器.甚至在性能更好的硬件设备上)的情况下才会出现. 比如有这样一个情况:需要追踪对一事件处理的次数 counter = 0 def process_item(item): global counter ... do something with item

  • python线程中的同步问题及解决方法

    多线程开发可能遇到的问题 假设两个线程t1和t2都要对num=0进行增1运算,t1和t2都各对num修改1000000次,num的最终的结果应该为2000000.但是由于是多线程访问,有可能出现下面情况: from threading import Thread import time num = 0 def test1(): global num for i in range(1000000): num += 1 print("--test1--num=%d" % num) def

  • Python多线程同步Lock、RLock、Semaphore、Event实例

    一.多线程同步 由于CPython的python解释器在单线程模式下执行,所以导致python的多线程在很多的时候并不能很好地发挥多核cpu的资源.大部分情况都推荐使用多进程. python的多线程的同步与其他语言基本相同,主要包含: Lock & RLock :用来确保多线程多共享资源的访问. Semaphore : 用来确保一定资源多线程访问时的上限,例如资源池.  Event : 是最简单的线程间通信的方式,一个线程可以发送信号,其他的线程接收到信号后执行操作. 二.实例 1)Lock &a

  • python线程中同步锁详解

    在使用多线程的应用下,如何保证线程安全,以及线程之间的同步,或者访问共享变量等问题是十分棘手的问题,也是使用多线程下面临的问题,如果处理不好,会带来较严重的后果,使用python多线程中提供Lock Rlock Semaphore Event Condition 用来保证线程之间的同步,后者保证访问共享变量的互斥问题 Lock & RLock:互斥锁 用来保证多线程访问共享变量的问题 Semaphore对象:Lock互斥锁的加强版,可以被多个线程同时拥有,而Lock只能被某一个线程同时拥有. E

  • Python函数中的全局变量详解

    目录 1.什么是全局变量? 2.在函数外部定义的变量是全局变量. 3.在函数内部定义中添加global关键词后变成全局变量. 总结 1.什么是全局变量? 在Python中,全局变量指的是可以作用于函数内部和外部的变量. 在这里有两种情况:在函数的外部定义和内部定义添加global关键词变成全局变量. 2.在函数外部定义的变量是全局变量. 假设一个变量在函数的外部定义,那么这个函数就可以在函数的内部访问,也可以在函数的外部的访问. 示例:定义一个全局变量b,然后定义一个函数a,最后在该函数的内部和

  • Python Pandas 中的数据结构详解

    目录 1.Series 1.1通过列表创建Series 1.2通过字典创建Series 2.DataFrame 3.索引对象 4.查看DataFrame的常用属性 前言: Pandas有三种数据结构:Series.DataFrame和Panel.Series类似于数组:DataFrame类似于表格:Panel可视为Excel的多表单Sheet 1.Series Series是一种一维数组对象,包含一个值序列,并且包含数据标签,称为索引(index),通过索引来访问数组中的数据. 1.1通过列表创

  • Android入门之在子线程中调用Handler详解

    目录 简介 本章示例 前端代码 后端代码 简介 前一章我们以一个简单的小动画来解释了Handler. 这章我们会介绍在子线程里写Handler.如果是Handler写在了子线程中的话,我们就需要自己创建一个Looper对象了:创建的流程如下: 直接调用Looper.prepare()方法即可为当前线程创建Looper对象,而它的构造器会创建配套的MessageQueue; 创建Handler对象,重写handleMessage( )方法就可以处理来自于其他线程的信息了! 调用Looper.loo

  • Python线程threading模块用法详解

    本文实例讲述了Python线程threading模块用法.分享给大家供大家参考,具体如下: threading-更高级别的线程接口 源代码:Lib/threading.py 该模块在较低级别thread模块之上构建更高级别的线程接口.另请参见mutex和Queue模块. 该dummy_threading模块适用于threading因thread缺失而无法使用的情况 . 注意: 从Python 2.6开始,该模块提供 符合 PEP 8的别名和属性,以替换camelCase受Java的线程API启发

  • Python线程编程之Thread详解

    目录 一.线程编程(Thread) 1.线程基本概念 1.1.什么事线程 1.2.线程特征 二.threading模块创建线程 1.创建线程对象 2. 启动线程 3. 回收线程 4.代码演示 5.线程对象属性 6.自定义线程类 7.一个很重要的练习 我很多不懂 8.线程间通信 1. 线程Event 代码演示 2. 线程锁 Lock代码演示 10.死锁及其处理 1.定义 2.图解 3. 死锁产生条件 4.死锁代码演示 python线程GIL 1.python线程的GIL问题 (全局解释器锁) 总结

  • python datetime中strptime用法详解

    python 中datetime中strptime用法,具体代码如下所示: import datetime day20 = datetime.datetime.strptime('2020-01-01 0:0:0', '%Y-%m-%d %H:%M:%S') nowdate = datetime.datetime.today() dela = day20 - nowdate day = dela.days hour = int(dela.seconds / 60 / 60) minute = i

  • Python线程之多线程展示详解

    目录 什么多线程? 获取活跃线程相关数据 总结 什么多线程? 多线程,就是多个独立的运行单位,同时执行同样的事情. 想想一下,文章发布后同时被很多读者阅读,这些读者在做的事情'阅读'就是一个一个的线程. 多线程就是多个读者同时阅读这篇文章.重点是:同时有多个读者在做阅读这件事情. 如果是多个读者,分时间阅读,最后任意时刻只有一个读者在阅读,虽然是多个读者,但还是单线程. 我们再拿前面分享的代码:关注和点赞. def dianzan_guanzhu(): now = datetime.dateti

  • python SQLAlchemy 中的Engine详解

    先看这张图,这是从官方网站扒下来的. Engine 翻译过来就是引擎的意思,汽车通过引擎来驱动,而 SQLAlchemy 是通过 Engine 来驱动,Engine 维护了一个连接池(Pool)对象和方言(Dialect).方言简单而言就是你连的到底是 MySQL 还是 Oracle 或者 PostgreSQL 还是其它数据库,关于方言(Dialect)的介绍在另外一篇文章有介绍,可参考数据库方言dialect. 连接池很重要,因为每次发送sql查询的时候都需要先建立连接,如果程序启动的时候事先

  • 对python多线程中互斥锁Threading.Lock的简单应用详解

    一.线程共享进程资源 每个线程互相独立,相互之间没有任何关系,但是在同一个进程中的资源,线程是共享的,如果不进行资源的合理分配,对数据造成破坏,使得线程运行的结果不可预期.这种现象称为"线程不安全". 实例如下: #-*- coding: utf-8 -*- import threading import time def test_xc(): f = open("test.txt","a") f.write("test_dxc&quo

随机推荐