pytorch之添加BN的实现

pytorch之添加BN层

批标准化

模型训练并不容易,特别是一些非常复杂的模型,并不能非常好的训练得到收敛的结果,所以对数据增加一些预处理,同时使用批标准化能够得到非常好的收敛结果,这也是卷积网络能够训练到非常深的层的一个重要原因。

数据预处理

目前数据预处理最常见的方法就是中心化和标准化,中心化相当于修正数据的中心位置,实现方法非常简单,就是在每个特征维度上减去对应的均值,最后得到 0 均值的特征。标准化也非常简单,在数据变成 0 均值之后,为了使得不同的特征维度有着相同的规模,可以除以标准差近似为一个标准正态分布,也可以依据最大值和最小值将其转化为 -1 ~ 1之间,这两种方法非常的常见,如果你还记得,前面我们在神经网络的部分就已经使用了这个方法实现了数据标准化,至于另外一些方法,比如 PCA 或者 白噪声已经用得非常少了。

Batch Normalization

前面在数据预处理的时候,尽量输入特征不相关且满足一个标准的正态分布,

这样模型的表现一般也较好。但是对于很深的网路结构,网路的非线性层会使得输出的结果变得相关,且不再满足一个标准的 N(0, 1) 的分布,甚至输出的中心已经发生了偏移,这对于模型的训练,特别是深层的模型训练非常的困难。

所以在 2015 年一篇论文提出了这个方法,批标准化,简而言之,就是对于每一层网络的输出,对其做一个归一化,使其服从标准的正态分布,这样后一层网络的输入也是一个标准的正态分布,所以能够比较好的进行训练,加快收敛速度。batch normalization 的实现非常简单,对于给定的一个 batch 的数据算法的公式如下

第一行和第二行是计算出一个 batch 中数据的均值和方差,接着使用第三个公式对 batch 中的每个数据点做标准化,ϵ是为了计算稳定引入的一个小的常数,通常取 ,最后利用权重修正得到最后的输出结果,非常的简单,
实现一下简单的一维的情况,也就是神经网络中的情况

import sys
sys.path.append('..')

import torch
def simple_batch_norm_1d(x, gamma, beta):
 eps = 1e-5
 x_mean = torch.mean(x, dim=0, keepdim=True) # 保留维度进行 broadcast
 x_var = torch.mean((x - x_mean) ** 2, dim=0, keepdim=True)
 x_hat = (x - x_mean) / torch.sqrt(x_var + eps)
 return gamma.view_as(x_mean) * x_hat + beta.view_as(x_mean)
x = torch.arange(15).view(5, 3)
gamma = torch.ones(x.shape[1])
beta = torch.zeros(x.shape[1])
print('before bn: ')
print(x)
y = simple_batch_norm_1d(x, gamma, beta)
print('after bn: ')
print(y)

可以看到这里一共是 5 个数据点,三个特征,每一列表示一个特征的不同数据点,使用批标准化之后,每一列都变成了标准的正态分布这个时候会出现一个问题,就是测试的时候该使用批标准化吗?答案是肯定的,因为训练的时候使用了,而测试的时候不使用肯定会导致结果出现偏差,但是测试的时候如果只有一个数据集,那么均值不就是这个值,方差为 0 吗?这显然是随机的,所以测试的时候不能用测试的数据集去算均值和方差,而是用训练的时候算出的移动平均均值和方差去代替

实现以下能够区分训练状态和测试状态的批标准化方法

def batch_norm_1d(x, gamma, beta, is_training, moving_mean, moving_var, moving_momentum=0.1):
 eps = 1e-5
 x_mean = torch.mean(x, dim=0, keepdim=True) # 保留维度进行 broadcast
 x_var = torch.mean((x - x_mean) ** 2, dim=0, keepdim=True)
 if is_training:
 x_hat = (x - x_mean) / torch.sqrt(x_var + eps)
 moving_mean[:] = moving_momentum * moving_mean + (1. - moving_momentum) * x_mean
 moving_var[:] = moving_momentum * moving_var + (1. - moving_momentum) * x_var
 else:
 x_hat = (x - moving_mean) / torch.sqrt(moving_var + eps)
 return gamma.view_as(x_mean) * x_hat + beta.view_as(x_mean)

下面使用深度神经网络分类 mnist 数据集的例子来试验一下批标准化是否有用

import numpy as np
from torchvision.datasets import mnist # 导入 pytorch 内置的 mnist 数据
from torch.utils.data import DataLoader
from torch import nn
from torch.autograd import Variable

使用内置函数下载 mnist 数据集

train_set = mnist.MNIST('./data', train=True)
test_set = mnist.MNIST('./data', train=False)

def data_tf(x):
 x = np.array(x, dtype='float32') / 255
 x = (x - 0.5) / 0.5 # 数据预处理,标准化
 x = x.reshape((-1,)) # 拉平
 x = torch.from_numpy(x)
 return x

train_set = mnist.MNIST('./data', train=True, transform=data_tf, download=True) # 重新载入数据集,申明定义的数据变换
test_set = mnist.MNIST('./data', train=False, transform=data_tf, download=True)
train_data = DataLoader(train_set, batch_size=64, shuffle=True)
test_data = DataLoader(test_set, batch_size=128, shuffle=False)
class multi_network(nn.Module):
 def __init__(self):
 super(multi_network, self).__init__()
 self.layer1 = nn.Linear(784, 100)
 self.relu = nn.ReLU(True)
 self.layer2 = nn.Linear(100, 10)

 self.gamma = nn.Parameter(torch.randn(100))
 self.beta = nn.Parameter(torch.randn(100))

 self.moving_mean = Variable(torch.zeros(100))
 self.moving_var = Variable(torch.zeros(100))

 def forward(self, x, is_train=True):
 x = self.layer1(x)
 x = batch_norm_1d(x, self.gamma, self.beta, is_train, self.moving_mean, self.moving_var)
 x = self.relu(x)
 x = self.layer2(x)
 return x
net = multi_network()
# 定义 loss 函数
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), 1e-1) # 使用随机梯度下降,学习率 0.1

from datetime import datetime
import torch
import torch.nn.functional as F
from torch import nn
from torch.autograd import Variable
def get_acc(output, label):
 total = output.shape[0]
 _, pred_label = output.max(1)
 num_correct = (pred_label == label).sum().item()
 return num_correct / total

#定义训练函数
def train(net, train_data, valid_data, num_epochs, optimizer, criterion):
 if torch.cuda.is_available():
 net = net.cuda()
 prev_time = datetime.now()
 for epoch in range(num_epochs):
 train_loss = 0
 train_acc = 0
 net = net.train()
 for im, label in train_data:
  if torch.cuda.is_available():
  im = Variable(im.cuda()) # (bs, 3, h, w)
  label = Variable(label.cuda()) # (bs, h, w)
  else:
  im = Variable(im)
  label = Variable(label)
  # forward
  output = net(im)
  loss = criterion(output, label)
  # backward
  optimizer.zero_grad()
  loss.backward()
  optimizer.step()
 train_loss += loss.item()
 train_acc += get_acc(output, label)

 cur_time = datetime.now()
 h, remainder = divmod((cur_time - prev_time).seconds, 3600)
 m, s = divmod(remainder, 60)
 time_str = "Time %02d:%02d:%02d" % (h, m, s)
 if valid_data is not None:
 valid_loss = 0
 valid_acc = 0
 net = net.eval()
 for im, label in valid_data:
  if torch.cuda.is_available():
  im = Variable(im.cuda(), volatile=True)
  label = Variable(label.cuda(), volatile=True)
  else:
  im = Variable(im, volatile=True)
  label = Variable(label, volatile=True)
  output = net(im)
  loss = criterion(output, label)
  valid_loss += loss.item()
  valid_acc += get_acc(output, label)
 epoch_str = (
  "Epoch %d. Train Loss: %f, Train Acc: %f, Valid Loss: %f, Valid Acc: %f, "
  % (epoch, train_loss / len(train_data),
  train_acc / len(train_data), valid_loss / len(valid_data),
  valid_acc / len(valid_data)))
 else:
 epoch_str = ("Epoch %d. Train Loss: %f, Train Acc: %f, " %
   (epoch, train_loss / len(train_data),
   train_acc / len(train_data)))
 prev_time = cur_time
 print(epoch_str + time_str)

train(net, train_data, test_data, 10, optimizer, criterion)

#这里的 γ和
ββ都作为参数进行训练,初始化为随机的高斯分布,

#moving_mean 和 moving_var 都初始化为 0,并不是更新的参数,训练完 10 次之后,我们可以看看移动平均和移动方差被修改为了多少

#打出 moving_mean 的前 10 项

print(net.moving_mean[:10])
no_bn_net = nn.Sequential(
 nn.Linear(784, 100),
 nn.ReLU(True),
 nn.Linear(100, 10)
)

optimizer = torch.optim.SGD(no_bn_net.parameters(), 1e-1) # 使用随机梯度下降,学习率 0.1
train(no_bn_net, train_data, test_data, 10, optimizer, criterion)

可以看到虽然最后的结果两种情况一样,但是如果我们看前几次的情况,可以看到使用批标准化的情况能够更快的收敛,因为这只是一个小网络,所以用不用批标准化都能够收敛,但是对于更加深的网络,使用批标准化在训练的时候能够很快地收敛从上面可以看到,我们自己实现了 2 维情况的批标准化,对应于卷积的 4 维情况的标准化是类似的,只需要沿着通道的维度进行均值和方差的计算,但是我们自己实现批标准化是很累的,pytorch 当然也为我们内置了批标准化的函数,一维和二维分别是 torch.nn.BatchNorm1d() 和 torch.nn.BatchNorm2d(),不同于我们的实现,pytorch 不仅将
γγ和 β作为训练的参数,也将 moving_mean 和 moving_var 也作为参数进行训练

下面在卷积网络下试用一下批标准化看看效果

def data_tf(x):
 x = np.array(x, dtype='float32') / 255
 x = (x - 0.5) / 0.5 # 数据预处理,标准化
 x = torch.from_numpy(x)
 x = x.unsqueeze(0)
 return x

train_set = mnist.MNIST('./data', train=True, transform=data_tf, download=True) # 重新载入数据集,申明定义的数据变换
test_set = mnist.MNIST('./data', train=False, transform=data_tf, download=True)
train_data = DataLoader(train_set, batch_size=64, shuffle=True)
test_data = DataLoader(test_set, batch_size=128, shuffle=False)

使用批标准化

class conv_bn_net(nn.Module):
 def __init__(self):
 super(conv_bn_net, self).__init__()
 self.stage1 = nn.Sequential(
  nn.Conv2d(1, 6, 3, padding=1),
  nn.BatchNorm2d(6),
  nn.ReLU(True),
  nn.MaxPool2d(2, 2),
  nn.Conv2d(6, 16, 5),
  nn.BatchNorm2d(16),
  nn.ReLU(True),
  nn.MaxPool2d(2, 2)
 )

 self.classfy = nn.Linear(400, 10)
 def forward(self, x):
 x = self.stage1(x)
 x = x.view(x.shape[0], -1)
 x = self.classfy(x)
 return x

net = conv_bn_net()
optimizer = torch.optim.SGD(net.parameters(), 1e-1) # 使用随机梯度下降,学习率 0.1
train(net, train_data, test_data, 5, optimizer, criterion)

不使用批标准化

class conv_no_bn_net(nn.Module):
 def __init__(self):
 super(conv_no_bn_net, self).__init__()
 self.stage1 = nn.Sequential(
  nn.Conv2d(1, 6, 3, padding=1),
  nn.ReLU(True),
  nn.MaxPool2d(2, 2),
  nn.Conv2d(6, 16, 5),
  nn.ReLU(True),
  nn.MaxPool2d(2, 2)
 )

 self.classfy = nn.Linear(400, 10)
 def forward(self, x):
 x = self.stage1(x)
 x = x.view(x.shape[0], -1)
 x = self.classfy(x)
 return x

net = conv_no_bn_net()
optimizer = torch.optim.SGD(net.parameters(), 1e-1) # 使用随机梯度下降,学习率 0.1
train(net, train_data, test_data, 5, optimizer, criterion)

以上这篇pytorch之添加BN的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • PyTorch的深度学习入门之PyTorch安装和配置

    前言 深度神经网络是一种目前被广泛使用的工具,可以用于图像识别.分类,物体检测,机器翻译等等.深度学习(DeepLearning)是一种学习神经网络各种参数的方法.因此,我们将要介绍的深度学习,指的是构建神经网络结构,并且运用各种深度学习算法训练网络参数,进而解决各种任务.本文从PyTorch环境配置开始.PyTorch是一种Python接口的深度学习框架,使用灵活,学习方便.还有其他主流的深度学习框架,例如Caffe,TensorFlow,CNTK等等,各有千秋.笔者认为,初期学习还是选择一种

  • PyTorch中permute的用法详解

    permute(dims) 将tensor的维度换位. 参数:参数是一系列的整数,代表原来张量的维度.比如三维就有0,1,2这些dimension. 例: import torch import numpy as np a=np.array([[[1,2,3],[4,5,6]]]) unpermuted=torch.tensor(a) print(unpermuted.size()) # --> torch.Size([1, 2, 3]) permuted=unpermuted.permute(

  • Pytorch之Variable的用法

    1.简介 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Variable和tensor的区别和联系 Variable是篮子,而tensor是鸡蛋,鸡蛋应该放在篮子里才能方便拿走(定义variable时一个参数就是tensor) Variable这个篮子里除了装了tensor外还有requires_grad参数,表示是否需要对其求导,默认为False Variable这个篮子呢,自身有一些属性 比如grad,梯度vari

  • Pytorch之parameters的使用

    1.预构建网络 class Net(nn.Module): def __init__(self): super(Net, self).__init__() # 1 input image channel, 6 output channels, 5*5 square convolution # kernel self.conv1 = nn.Conv2d(1, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5) # an affine operation: y = Wx +

  • pytorch之添加BN的实现

    pytorch之添加BN层 批标准化 模型训练并不容易,特别是一些非常复杂的模型,并不能非常好的训练得到收敛的结果,所以对数据增加一些预处理,同时使用批标准化能够得到非常好的收敛结果,这也是卷积网络能够训练到非常深的层的一个重要原因. 数据预处理 目前数据预处理最常见的方法就是中心化和标准化,中心化相当于修正数据的中心位置,实现方法非常简单,就是在每个特征维度上减去对应的均值,最后得到 0 均值的特征.标准化也非常简单,在数据变成 0 均值之后,为了使得不同的特征维度有着相同的规模,可以除以标准

  • 浅谈pytorch中的BN层的注意事项

    最近修改一个代码的时候,当使用网络进行推理的时候,发现每次更改测试集的batch size大小竟然会导致推理结果不同,甚至产生错误结果,后来发现在网络中定义了BN层,BN层在训练过程中,会将一个Batch的中的数据转变成正太分布,在推理过程中使用训练过程中的参数对数据进行处理,然而网络并不知道你是在训练还是测试阶段,因此,需要手动的加上,需要在测试和训练阶段使用如下函数. model.train() or model.eval() BN类的定义见pytorch中文参考文档 补充知识:关于pyto

  • Pytorch 使用不同版本的cuda的方法步骤

    由于课题的原因,笔者主要通过 Pytorch 框架进行深度学习相关的学习和实验.在运行和学习网络上的 Pytorch 应用代码的过程中,不少项目会标注作者在运行和实验时所使用的 Pytorch 和 cuda 版本信息.由于 Pytorch 和 cuda 版本的更新较快,可能出现程序的编译和运行需要之前版本的 Pytorch 和 cuda 进行运行环境支持的情况.比如笔者遇到的某个项目中编写了 CUDAExtension 拓展,而其中使用的 cuda 接口函数在新版本的 cuda 中做了修改,使得

  • 解决Pytorch半精度浮点型网络训练的问题

    用Pytorch1.0进行半精度浮点型网络训练需要注意下问题: 1.网络要在GPU上跑,模型和输入样本数据都要cuda().half() 2.模型参数转换为half型,不必索引到每层,直接model.cuda().half()即可 3.对于半精度模型,优化算法,Adam我在使用过程中,在某些参数的梯度为0的时候,更新权重后,梯度为零的权重变成了NAN,这非常奇怪,但是Adam算法对于全精度数据类型却没有这个问题. 另外,SGD算法对于半精度和全精度计算均没有问题. 还有一个问题是不知道是不是网络

  • 解决Pytorch中Batch Normalization layer踩过的坑

    1. 注意momentum的定义 Pytorch中的BN层的动量平滑和常见的动量法计算方式是相反的,默认的momentum=0.1 BN层里的表达式为: 其中γ和β是可以学习的参数.在Pytorch中,BN层的类的参数有: CLASS torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 每个参数具体含义参见文档,需要注意的是,affine定义了BN层的

  • pytorch 在网络中添加可训练参数,修改预训练权重文件的方法

    实践中,针对不同的任务需求,我们经常会在现成的网络结构上做一定的修改来实现特定的目的. 假如我们现在有一个简单的两层感知机网络: # -*- coding: utf-8 -*- import torch from torch.autograd import Variable import torch.optim as optim x = Variable(torch.FloatTensor([1, 2, 3])).cuda() y = Variable(torch.FloatTensor([4,

  • 可视化pytorch 模型中不同BN层的running mean曲线实例

    加载模型字典 逐一判断每一层,如果该层是bn 的 running mean,就取出参数并取平均作为该层的代表 对保存的每个BN层的数值进行曲线可视化 from functools import partial import pickle import torch import matplotlib.pyplot as plt pth_path = 'checkpoint.pth' pickle.load = partial(pickle.load, encoding="latin1")

  • pytorch中的model.eval()和BN层的使用

    看代码吧~ class ConvNet(nn.module): def __init__(self, num_class=10): super(ConvNet, self).__init__() self.layer1 = nn.Sequential(nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(16), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2))

  • pytorch固定BN层参数的操作

    背景: 基于PyTorch的模型,想固定主分支参数,只训练子分支,结果发现在不同epoch相同的测试数据经过主分支输出的结果不同. 原因: 未固定主分支BN层中的running_mean和running_var. 解决方法: 将需要固定的BN层状态设置为eval. 问题示例: 环境:torch:1.7.0 # -*- coding:utf-8 -*- import torch import torch.nn as nn import torch.nn.functional as F class

  • python神经网络pytorch中BN运算操作自实现

    BN 想必大家都很熟悉,来自论文: <Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift> 也是面试常考察的内容,虽然一行代码就能搞定,但是还是很有必要用代码自己实现一下,也可以加深一下对其内部机制的理解. 通用公式: 直奔代码: 首先是定义一个函数,实现BN的运算操作: def batch_norm(is_training, x, gamma, beta, mo

随机推荐