elasticsearch索引index之put mapping的设置分析

目录
  • mapping的设置过程
    • put mapping
    • updateTask响应
  • 总结

mapping的设置过程

mapping机制使得elasticsearch索引数据变的更加灵活,近乎于no schema。mapping可以在建立索引时设置,也可以在后期设置。

后期设置可以是修改mapping(无法对已有的field属性进行修改,一般来说只是增加新的field)或者对没有mapping的索引设置mapping。

put mapping操作必须是master节点来完成,因为它涉及到集群matedata的修改,同时它跟index和type密切相关。修改只是针对特定index的特定type。

在Action support分析中我们分析过几种Action的抽象类型,put mapping Action属于TransportMasterNodeOperationAction的子类。

put mapping

它实现了masterOperation方法,每个继承自TransportMasterNodeOperationAction的子类都会根据自己的具体功能来实现这个方法。

这里的实现如下所示:

protected void masterOperation(final PutMappingRequest request, final ClusterState state, final ActionListener<PutMappingResponse> listener) throws ElasticsearchException {
        final String[] concreteIndices = clusterService.state().metaData().concreteIndices(request.indicesOptions(), request.indices());
      //构造request
        PutMappingClusterStateUpdateRequest updateRequest = new PutMappingClusterStateUpdateRequest()
                .ackTimeout(request.timeout()).masterNodeTimeout(request.masterNodeTimeout())
                .indices(concreteIndices).type(request.type())
                .source(request.source()).ignoreConflicts(request.ignoreConflicts());
      //调用putMapping方法,同时传入一个Listener
        metaDataMappingService.putMapping(updateRequest, new ActionListener<ClusterStateUpdateResponse>() {
            @Override
            public void onResponse(ClusterStateUpdateResponse response) {
                listener.onResponse(new PutMappingResponse(response.isAcknowledged()));
            }
            @Override
            public void onFailure(Throwable t) {
                logger.debug("failed to put mappings on indices [{}], type [{}]", t, concreteIndices, request.type());
                listener.onFailure(t);
            }
        });
    }

以上是TransportPutMappingAction对masterOperation方法的实现,这里并没有多少复杂的逻辑和操作。具体操作在matedataMappingService中。

updateTask响应

跟之前的CreateIndex一样,put Mapping也是向master提交一个updateTask。所有逻辑也都在execute方法中。这个task的基本跟CreateIndex一样,也需要在给定的时间内响应。它的代码如下所示:

public void putMapping(final PutMappingClusterStateUpdateRequest request, final ActionListener&lt;ClusterStateUpdateResponse&gt; listener) {
    //提交一个高基本的updateTask
        clusterService.submitStateUpdateTask("put-mapping [" + request.type() + "]", Priority.HIGH, new AckedClusterStateUpdateTask&lt;ClusterStateUpdateResponse&gt;(request, listener) {
            @Override
            protected ClusterStateUpdateResponse newResponse(boolean acknowledged) {
                return new ClusterStateUpdateResponse(acknowledged);
            }
            @Override
            public ClusterState execute(final ClusterState currentState) throws Exception {
                List&lt;String&gt; indicesToClose = Lists.newArrayList();
                try {
            //必须针对已经在matadata中存在的index,否则抛出异常
                    for (String index : request.indices()) {
                        if (!currentState.metaData().hasIndex(index)) {
                            throw new IndexMissingException(new Index(index));
                        }
                    }
                    //还需要存在于indices中,否则无法进行操作。所以这里要进行预建
                    for (String index : request.indices()) {
                        if (indicesService.hasIndex(index)) {
                            continue;
                        }
                        final IndexMetaData indexMetaData = currentState.metaData().index(index);
              //不存在就进行创建
                        IndexService indexService = indicesService.createIndex(indexMetaData.index(), indexMetaData.settings(), clusterService.localNode().id());
                        indicesToClose.add(indexMetaData.index());
                        // make sure to add custom default mapping if exists
                        if (indexMetaData.mappings().containsKey(MapperService.DEFAULT_MAPPING)) {
                            indexService.mapperService().merge(MapperService.DEFAULT_MAPPING, indexMetaData.mappings().get(MapperService.DEFAULT_MAPPING).source(), false);
                        }
                        // only add the current relevant mapping (if exists)
                        if (indexMetaData.mappings().containsKey(request.type())) {
                            indexService.mapperService().merge(request.type(), indexMetaData.mappings().get(request.type()).source(), false);
                        }
                    }
            //合并更新Mapping
                    Map&lt;String, DocumentMapper&gt; newMappers = newHashMap();
                    Map&lt;String, DocumentMapper&gt; existingMappers = newHashMap();
            //针对每个index进行Mapping合并
                    for (String index : request.indices()) {
                        IndexService indexService = indicesService.indexServiceSafe(index);
                        // try and parse it (no need to add it here) so we can bail early in case of parsing exception
                        DocumentMapper newMapper;
                        DocumentMapper existingMapper = indexService.mapperService().documentMapper(request.type());
                        if (MapperService.DEFAULT_MAPPING.equals(request.type())) {//存在defaultmapping则合并default mapping
                            // _default_ types do not go through merging, but we do test the new settings. Also don't apply the old default
                            newMapper = indexService.mapperService().parse(request.type(), new CompressedString(request.source()), false);
                        } else {
                            newMapper = indexService.mapperService().parse(request.type(), new CompressedString(request.source()), existingMapper == null);
                            if (existingMapper != null) {
                                // first, simulate
                                DocumentMapper.MergeResult mergeResult = existingMapper.merge(newMapper, mergeFlags().simulate(true));
                                // if we have conflicts, and we are not supposed to ignore them, throw an exception
                                if (!request.ignoreConflicts() &amp;&amp; mergeResult.hasConflicts()) {
                                    throw new MergeMappingException(mergeResult.conflicts());
                                }
                            }
                        }
                        newMappers.put(index, newMapper);
                        if (existingMapper != null) {
                            existingMappers.put(index, existingMapper);
                        }
                    }
                    String mappingType = request.type();
                    if (mappingType == null) {
                        mappingType = newMappers.values().iterator().next().type();
                    } else if (!mappingType.equals(newMappers.values().iterator().next().type())) {
                        throw new InvalidTypeNameException("Type name provided does not match type name within mapping definition");
                    }
                    if (!MapperService.DEFAULT_MAPPING.equals(mappingType) &amp;&amp; !PercolatorService.TYPE_NAME.equals(mappingType) &amp;&amp; mappingType.charAt(0) == '_') {
                        throw new InvalidTypeNameException("Document mapping type name can't start with '_'");
                    }
                    final Map&lt;String, MappingMetaData&gt; mappings = newHashMap();
                    for (Map.Entry&lt;String, DocumentMapper&gt; entry : newMappers.entrySet()) {
                        String index = entry.getKey();
                        // do the actual merge here on the master, and update the mapping source
                        DocumentMapper newMapper = entry.getValue();
                        IndexService indexService = indicesService.indexService(index);
                        if (indexService == null) {
                            continue;
                        }
                        CompressedString existingSource = null;
                        if (existingMappers.containsKey(entry.getKey())) {
                            existingSource = existingMappers.get(entry.getKey()).mappingSource();
                        }
                        DocumentMapper mergedMapper = indexService.mapperService().merge(newMapper.type(), newMapper.mappingSource(), false);
                        CompressedString updatedSource = mergedMapper.mappingSource();
                        if (existingSource != null) {
                            if (existingSource.equals(updatedSource)) {
                                // same source, no changes, ignore it
                            } else {
                                // use the merged mapping source
                                mappings.put(index, new MappingMetaData(mergedMapper));
                                if (logger.isDebugEnabled()) {
                                    logger.debug("[{}] update_mapping [{}] with source [{}]", index, mergedMapper.type(), updatedSource);
                                } else if (logger.isInfoEnabled()) {
                                    logger.info("[{}] update_mapping [{}]", index, mergedMapper.type());
                                }
                            }
                        } else {
                            mappings.put(index, new MappingMetaData(mergedMapper));
                            if (logger.isDebugEnabled()) {
                                logger.debug("[{}] create_mapping [{}] with source [{}]", index, newMapper.type(), updatedSource);
                            } else if (logger.isInfoEnabled()) {
                                logger.info("[{}] create_mapping [{}]", index, newMapper.type());
                            }
                        }
                    }
                    if (mappings.isEmpty()) {
                        // no changes, return
                        return currentState;
                    }
            //根据mapping的更新情况重新生成matadata
                    MetaData.Builder builder = MetaData.builder(currentState.metaData());
                    for (String indexName : request.indices()) {
                        IndexMetaData indexMetaData = currentState.metaData().index(indexName);
                        if (indexMetaData == null) {
                            throw new IndexMissingException(new Index(indexName));
                        }
                        MappingMetaData mappingMd = mappings.get(indexName);
                        if (mappingMd != null) {
                            builder.put(IndexMetaData.builder(indexMetaData).putMapping(mappingMd));
                        }
                    }
                    return ClusterState.builder(currentState).metaData(builder).build();
                } finally {
                    for (String index : indicesToClose) {
                        indicesService.removeIndex(index, "created for mapping processing");
                    }
                }
            }
        });
    }

以上就是mapping的设置过程,首先它跟Create index一样,只有master节点才能操作,而且是以task的形式提交给master;其次它的本质是将request中的mapping和index现存的或者是default mapping合并,并最终生成新的matadata更新到集群的各个节点。

总结

集群中的master操作无论是index方面还是集群方面,最终都是集群matadata的更新过程。而这些操作只能在master上进行,并且都是会超时的任务。put mapping当然也不例外。上面的两段代码基本概况了mapping的设置过程。这里就不再重复了。

这里还有一个问题没有涉及到就是mapping的合并。mapping合并会在很多地方用到。在下一节中会它进行详细分析,更多关于elasticsearch索引index put mapping设置的资料请关注我们其它相关文章!

(0)

相关推荐

  • elasticsearch索引的创建过程index create逻辑分析

    目录 索引的创建过程 materOperation方法实现 clusterservice处理 建立索引 修改配置 总结 索引的创建过程 从本篇开始,就进入了Index的核心代码部分.这里首先分析一下索引的创建过程.elasticsearch中的索引是多个分片的集合,它只是逻辑上的索引,并不具备实际的索引功能,所有对数据的操作最终还是由每个分片完成. 创建索引的过程,从elasticsearch集群上来说就是写入索引元数据的过程,这一操作只能在master节点上完成.这是一个阻塞式动作,在加上分配

  • elasticsearch索引index之engine读写控制结构实现

    目录 engine的实现结构 Engine类的方法: 如index方法的实现: 总结 engine的实现结构 elasticsearch对于索引中的数据操作如读写get等接口都封装在engine中,同时engine还封装了索引的读写控制,如流量.错误处理等.engine是离lucene最近的一部分. engine的实现结构如下所示: engine接口有三个实现类,主要逻辑都在InternalEngine中. ShadowEngine之实现了engine接口的部分读方法,主要用于对于索引的读操作.

  • elasticsearch索引index之Translog数据功能分析

    目录 跟大多数分布式系统一样,es也通过临时写入写操作来保证数据安全.因为lucene索引过程中,数据会首先据缓存在内存中直到达到一个量(文档数或是占用空间大小)才会写入到磁盘.这就会带来一个风险,如果在写入磁盘前系统崩溃,那么这些缓存数据就会丢失.es通过translog解决了这个问题,每次写操作都会写入一个临时文件translog中,这样如果系统需要恢复数据可以从translog中读取.本篇就主要分析translog的结构及写入方式. 这一部分主要包括两部分translog和tanslogF

  • elasticsearch索引index之merge底层机制的合并讲解

    merge是lucene的底层机制,merge过程会将index中的segment进行合并,生成更大的segment,提高搜索效率.segment是lucene索引的一种存储结构,每个segment都是一部分数据的完整索引,它是lucene每次flush或merge时候形成.每次flush就是将内存中的索引写出一个独立segment的过程.所以随着数据的不断增加,会形成越来越多的segment.因为segment是不可变的,删除操作不会改变segment内部数据,只是会在另外的地方记录某些数据删

  • elasticsearch索引index之Mapping实现关系结构示例

    目录 Mapping的实现关系结构 parse方法 部分Field Mapping的实现关系结构 Lucene索引的一个特点就filed,索引以field组合.这一特点为索引和搜索提供了很大的灵活性.elasticsearch则在Lucene的基础上更近一步,它可以是 no scheme.实现这一功能的秘密就Mapping.Mapping是对索引各个字段的一种预设,包括索引与分词方式,是否存储等,数据根据字段名在Mapping中找到对应的配置,建立索引.这里将对Mapping的实现结构简单分析,

  • elasticsearch源码分析index action实现方式

    目录 action的作用 TransportAction的类图 OperationTransportHandler的代码 primary操作的方法 总结 action的作用 上一篇从结构上分析了action的,本篇将以index action为例仔分析一下action的实现方式. 再概括一下action的作用:对于每种功能(如index)action都会包括两个基本的类*action(IndexAction)和Transport*action(TransportIndexAction),前者类中

  • elasticsearch索引index数据功能源码示例

    从本篇开始,对elasticsearch的介绍将进入数据功能部分(index),这一部分包括索引的创建,管理,数据索引及搜索等相关功能.对于这一部分的介绍,首先对各个功能模块的分析,然后详细分析数据索引和搜索的整个流程. 这一部分从代码包结构上可以分为:index, indices及lucene(common)几个部分.index包中的代码主要是各个功能对应于lucene的底层操作,它们的操作对象是index的shard,是elasticsearch对lucene各个功能的扩展和封装.indic

  • elasticsearch索引创建create index集群matedata更新

    目录 创建索引更新集群index matedata 首先创建index的create方法 从indice中获取对应的IndexService 总结 创建索引更新集群index matedata 创建索引需要创建索引并且更新集群index matedata,这一过程在MetaDataCreateIndexService的createIndex方法中完成.这里会提交一个高优先级,AckedClusterStateUpdateTask类型的task.索引创建需要即时得到反馈,异常这个task需要返回,

  • elasticsearch索引index之put mapping的设置分析

    目录 mapping的设置过程 put mapping updateTask响应 总结 mapping的设置过程 mapping机制使得elasticsearch索引数据变的更加灵活,近乎于no schema.mapping可以在建立索引时设置,也可以在后期设置. 后期设置可以是修改mapping(无法对已有的field属性进行修改,一般来说只是增加新的field)或者对没有mapping的索引设置mapping. put mapping操作必须是master节点来完成,因为它涉及到集群mate

  • 使用canal监控mysql数据库实现elasticsearch索引实时更新

    业务场景 使用elasticsearch作为全文搜索引擎,对标题.内容等,实现智能搜索.输入提示.拼音搜索等 elasticsearch索引与数据库数据不一致,导致搜索到不应被搜到的结果,或者搜不到已有数据 索引相关业务,影响其他业务操作,如索引删除失败导致数据库删除失败 为了减少对现有业务的侵入,基于数据库层面,对信息表进行监控,但需要索引的字段变动时,更新索引 由于使用的是mysql数据库,故决定采用alibaba的canal中间件 主要是监控信息基表base,监控这一张表的数据变动,mq消

  • Elasticsearch索引的分片分配Recovery使用讲解

    目录 什么是recovery? 减少集群full restart造成的数据来回拷贝 减少主副本之间的数据复制 特大热索引为何恢复慢 什么是recovery? 在elasticsearch中,recovery指的是一个索引的分片分配到另外一个节点的过程,一般在快照恢复.索引复制分片的变更.节点故障或重启时发生,由于master节点保存整个集群相关的状态信息,因此可以判断哪些分片需要再分配及分配到哪个节点,例如: 如果某个主分片在,而复制分片所在的节点挂掉了,那么master需要另行选择一个可用节点

随机推荐