Python matplotlib绘图时指定图像大小及放大图像详解

matplotlib绘图时是默认的大小,有时候默认的大小会感觉图片里的内容都被压缩了,解决方法如下。

先是原始代码:

from matplotlib import pyplot as plt

plt.figure(figsize=(1,1))

x = [1,2,3]
plt.plot(x, x)
plt.show()

关键的代码是plt.figure(figsize=(1,1)),生成的图片如下

修改代码,放大图片:

from matplotlib import pyplot as plt

plt.figure(figsize=(10,10))

x = [1,2,3]
plt.plot(x, x)
plt.show()

这时候横坐标和纵坐标都放大了10倍:

如果想要指定像素,可以这么做:

from matplotlib import pyplot as plt

plt.figure(dpi=80)

x = [1,2,3]
plt.plot(x, x)
plt.show()

更多参考资料:python - How do you change the size of figures drawn with matplotlib? - Stack Overflow

附:matplotlib绘图时横纵坐标和图例的字体大小如何设置

横纵坐标字体大小调节:

通过fontsize可以进行调节

ax1.set_ylabel("AUC",fontsize=20)
ax2.set_ylabel("Logloss",fontsize=20)

图例字体大小调节:

在plt.legend中加一个

prop={"size":18,"weight":"black"}

即可

总结

到此这篇关于Python matplotlib绘图时指定图像大小及放大图像的文章就介绍到这了,更多相关Python matplotlib绘图图像大小内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python的matplotlib绘图如何修改背景颜色的实现

    在主图中背景颜色不知道怎么改,plt.plot()中没有axisbg参数. 但是子图可以对plt.subplot的参数做修改,下面是对子图的背景颜色修改代码 import matplotlib.pyplot as plt import numpy as np # Fixing random state for reproducibility np.random.seed(19680801) dt = 0.01 t = np.arange(0, 30, dt) nse1 = np.random.r

  • python的绘图工具matplotlib使用实例

    matplotlib是功能十分强大的绘制二维图形的Python模块,它用Python语言实现了MATLAB画图函数的易用性,同时又有非常强大的可定制性.它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中.它的文档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源程序.因此如果你需要绘制某种类型的图,只需要在这个页面中浏览.复制.粘贴一下,基本上都能搞定! 实例代码如下: 1. 柱状图 import matp

  • python绘图库Matplotlib的安装

    本文简单介绍了Python绘图库Matplotlib的安装,简介如下: matplotlib是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地 进行制图.Matplotlib的安装可以参见:官网链接 http://matplotlib.org/users/installing.html 安装总结步骤如下: windows 平台上下载.exe格式 直接安装. 1.python下载安装 下载地址:http://www.python.org/download/

  • python matplotlib绘图,修改坐标轴刻度为文字的实例

    工作中偶尔需要做客流分析,用pyplot 库绘图.一般情况下, x 轴刻度默认显示为数字. 例如: 我希望x 轴刻度显示为星期日期. 查询pyplot 文档, 发现了 xtick() 函数可以修改刻度. 代码如下: import matplotlib.pyplot as plt import numpy as np #val_ls = [np.random.randint(100) + i*20 for i in range(7)] scale_ls = range(7) index_ls =

  • 学习python中matplotlib绘图设置坐标轴刻度、文本

    总结matplotlib绘图如何设置坐标轴刻度大小和刻度. 上代码: from pylab import * from matplotlib.ticker import MultipleLocator, FormatStrFormatter xmajorLocator = MultipleLocator(20) #将x主刻度标签设置为20的倍数 xmajorFormatter = FormatStrFormatter('%1.1f') #设置x轴标签文本的格式 xminorLocator = M

  • 利用numpy+matplotlib绘图的基本操作教程

    简述 Matplotlib是一个基于python的2D画图库,能够用python脚本方便的画出折线图,直方图,功率谱图,散点图等常用图表,而且语法简单.具体介绍见matplot官网. Numpy(Numeric Python)是一个模仿matlab的对python数值运算进行的扩展,提供了许多高级的数值编程工具,如:矩阵数据类型.矢量处理,以及精密的运算库.专为进行严格的数字处理而产生,而且据说自从他出现了以后,NASA就把很多原来用fortran和matlab做的工作交给了numpy来做了,可

  • Python绘图Matplotlib之坐标轴及刻度总结

    学习https://matplotlib.org/gallery/index.html 记录,描述不一定准确,具体请参考官网 Matplotlib使用总结图 import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号 import pandas as pd import nump

  • matplotlib基础绘图命令之imshow的使用

    在matplotlib中,imshow方法用于绘制热图,基本用法如下 import matplotlib.pyplot as plt import numpy as np np.random.seed(123456789) data = np.random.rand(25).reshape(5, 5) plt.imshow(data) 输出结果如下 imshow方法首先将二维数组的值标准化为0到1之间的值,然后根据指定的渐变色依次赋予每个单元格对应的颜色,就形成了热图.对于热图而言,通常我们还需

  • Python matplotlib绘图时指定图像大小及放大图像详解

    matplotlib绘图时是默认的大小,有时候默认的大小会感觉图片里的内容都被压缩了,解决方法如下. 先是原始代码: from matplotlib import pyplot as plt plt.figure(figsize=(1,1)) x = [1,2,3] plt.plot(x, x) plt.show() 关键的代码是plt.figure(figsize=(1,1)),生成的图片如下 修改代码,放大图片: from matplotlib import pyplot as plt pl

  • Python matplotlib绘图时使用鼠标滚轮放大/缩小图像

    目录 思路: 示例: 输出效果: 总结 思路: 使用fig.canvas.mpl_connect()函数来绑定相关fig的滚轮事件 利用事件event的inaxes属性获取当前鼠标所在坐标系ax 使用get_xlim()函数获取坐标系ax的x/y轴坐标刻度范围 使用set()函数对坐标系ax进行放大/缩小 示例: import matplotlib.pyplot as plt import numpy as np fig = plt.figure() def call_back(event):

  • 完美解决Python matplotlib绘图时汉字显示不正常的问题

    Matplotlib是一个很好的作图软件,但是python下默认不支持中文,所以需要做一些修改,方法如下: 1.在python安装目录的Lib目录下创建ch.py文件. 文件中代码为: 保存,以后通过以下代码调用: #-*-coding:utf-8-*- #文件名: ch.py def set_ch(): from pylab import mpl mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定默认字体 mpl.rcParams['axes

  • python ctypes库2_指定参数类型和返回类型详解

    python函数的参数类型和返回类型默认为int. 如果需要传递一个float值给dll,那么需要指定参数的类型. 如果需要返回一个flaot值到python中,那么需要指定返回数据的类型. 数据类型参考python文档: https://docs.python.org/3.6/library/ctypes.html#fundamental-data-types import ctypes path = r'E:\01_Lab\VisualStudioLab\cpp_dll\cpp_dll\De

  • MySQL Left JOIN时指定NULL列返回特定值详解

    coalesce 函数可以接受多个参数,将会返回这些参数中第一个非NULL的值,若提供的参数全部为NULL,则返回NULLifnull 函数和coalesce功能一样,只是只可以接受两个参数if  函数接受三个参数,实现类似于三元判断符(?:)的功能,即第一个参数不为NULL且不为0时,返回第二个参数,否则返回第三个参数 复制代码 代码如下: SELECT a.*,coalesce(t.cous,0) as count FROM brand as a left join (select bran

  • python读取csv文件指定行的2种方法详解

    csv是Comma-Separated Values的缩写,是用文本文件形式储存的表格数据,比如如下的表格 就可以存储为csv文件,文件内容是: No.,Name,Age,Score 1,Apple,12,98 2,Ben,13,97 3,Celia,14,96 4,Dave,15,95 假设上述csv文件保存为"A.csv",如何用Python像操作Excel一样提取其中的一行,也就是一条记录,利用Python自带的csv模块,有2种方法可以实现: 方法一:reader 第一种方法使

  • Python matplotlib画图时图例说明(legend)放到图像外侧详解

    用python的matplotlib画图时,往往需要加图例说明.如果不设置任何参数,默认是加到图像的内侧的最佳位置. import matplotlib.pyplot as plt import numpy as np x = np.arange(10) fig = plt.figure() ax = plt.subplot(111) for i in xrange(5): ax.plot(x, i * x, label='$y = %ix$' % i) plt.legend() plt.sho

  • PyCharm调用matplotlib绘图时图像弹出问题详解

    目录 问题描述 问题解决 补充注意plt.show() 总结 问题描述 在PyCharm中调用matplotlib绘制图像时,默认图像会在控制台输出(如图),当绘制图像较多时,控制台输出方式很不直观. 问题解决 希望在PyCharm中调用matplotlib绘制图像时,可以直接弹出Figure 窗口. 点击 菜单栏中的File→Settings→Python Scientific,右侧出现的复选框,若勾选则会在控制台输出(默认),不勾选则会直接弹出图像. 补充注意plt.show() 博主在开始

  • Python matplotlib绘图可视化知识点整理(小结)

    无论你工作在什么项目上,IPython都是值得推荐的.利用ipython --pylab,可以进入PyLab模式,已经导入了matplotlib库与相关软件包(例如Numpy和Scipy),额可以直接使用相关库的功能. 本文作为学习过程中对matplotlib一些常用知识点的整理,方便查找. 这样IPython配置为使用你所指定的matplotlib GUI后端(TK/wxPython/PyQt/Mac OS X native/GTK).对于大部分用户而言,默认的后端就已经够用了.Pylab模式

  • python matplotlib 绘图 和 dpi对应关系详解

    我就废话不多说啦! dpi=1 600×400 dpi=2 1200×800 dpi=3 1800×1200 ........ dpi=21 (21×600)×(21×400) ---> 12600×8400 示例代码: ............... ............... plt_temp=y_axis plt_temp.resize(len(y_axis) , 1) plt_arr=np.concatenate((plt_arr,plt_temp ), axis=1) #print

随机推荐