python 性能提升的几种方法

关于python 性能提升的一些方案。

一、函数调用优化(空间跨度,避免访问内存)

程序的优化核心点在于尽量减少操作跨度,包括代码执行时间上的跨度以及内存中空间跨度。

1.大数据求和,使用sum

a = range(100000)
%timeit -n 10 sum(a)
10 loops, best of 3: 3.15 ms per loop
%%timeit
  ...: s = 0
  ...: for i in a:
  ...:  s += i
  ...:
100 loops, best of 3: 6.93 ms per loop

2.小数据求和,避免使用sum

%timeit -n 1000 s = a + b + c + d + e + f + g + h + i + j + k # 数据量较小时直接累加更快
1000 loops, best of 3: 571 ns per loop
%timeit -n 1000 s = sum([a,b,c,d,e,f,g,h,i,j,k]) # 小数据量调用 sum 函数,空间效率降低
1000 loops, best of 3: 669 ns per loop

结论:大数据求和sum效率高,小数据求和直接累加效率高。

二、for循环优化之取元素(使用栈或寄存器,避免访问内存)

for lst in [(1, 2, 3), (4, 5, 6)]: # lst 索引需要额外开销
  pass

 应尽量避免使用索引。

for a, b, c in [(1, 2, 3), (4, 5, 6)]: # better
  pass

相当于给每一个元素直接赋值。

def force():
 lst = range(4)
 for a1 in [1, 2]:
   for a2 in lst:
     for a3 in lst:
       for b1 in lst:
         for b2 in lst:
           for b3 in lst:
             for c1 in lst:
               for c2 in lst:
                 for c3 in lst:
                   for d1 in lst:
                     yield (a1, a2, a3, b1, b2, b3, c1, c2, c3, d1)

%%timeit -n 10
for t in force():
  sum([t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7], t[8], t[9]])
10 loops, best of 3: 465 ms per loop
%%timeit -n 10
for a1, a2, a3, b1, b2, b3, c1, c2, c3, d1 in force():
  sum([a1, a2, a3, b1, b2, b3, c1, c2, c3, d1])
10 loops, best of 3: 360 ms per loop

三、生成器优化(查表代替运算)

def force(start, end): # 用于密码暴力破解程序
  for i in range(start, end):
    now = i
    sublst = []
    for j in range(10):
      sublst.append(i % 10) # 除法运算开销较大,比乘法大
      i //= 10
    sublst.reverse()
    yield(tuple(sublst), now)
def force(): # better
 lst = range(5)
 for a1 in [1]:
   for a2 in lst:
     for a3 in lst:
       for b1 in lst:
         for b2 in lst:
           for b3 in lst:
             for c1 in lst:
               for c2 in lst:
                 for c3 in lst:
                   for d1 in lst:
                     yield (a1, a2, a3, b1, b2, b3, c1, c2, c3, d1)
  
r0 = [1, 2] # 可读性与灵活性
r1 = range(10)
r2 = r3 = r4 = r5 = r6 = r7 = r8 = r9 = r1
force = ((a0, a1, a2, a3, a4, a5, a6, a7, a8, a9)
      for a0 in r0 for a1 in r1 for a2 in r2 for a3 in r3 for a4 in r4
      for a5 in r5 for a6 in r6 for a7 in r7 for a8 in r8 for a9 in r9)

 四、幂运算优化(pow(x,y,z)) 

def isprime(n):
  if n & 1 == 0:
    return False
  k, q = find_kq(n)
  a = randint(1, n - 1)
  if pow(a, q, n) == 1: # 比使用 a ** q % n 运算优化数倍
    return True
  for j in range(k):
    if pow(a, pow(2, j) * q, n) == n - 1: # a **((2 ** j) * q) % n
      return True
  return False

结论:pow(x,y,z)优于x**y%z.

 五、除法运算优化

In [1]: from random import getrandbits

In [2]: x = getrandbits(4096)

In [3]: y = getrandbits(2048)

In [4]: %timeit -n 10000 q, r = divmod(x, y)
10000 loops, best of 3: 10.7 us per loop

In [5]: %timeit -n 10000 q, r = x//y, x % y
10000 loops, best of 3: 21.2 us per loop

 结论:divmod优于//和%。

六、优化算法时间复杂度  

算法的时间复杂度对程序的执行效率影响最大,在python中可以选择合适的数据结构来优化时间复杂度,如list和set查找某一个元素的时间复杂度分别是O(n)和O(1)。不同场景有不同的优化方式,总的来说,一般有分治,分支定界、贪心动态规划等思想。

七、合理使用copy和deepcopy  

对于dict和list等数据结构的对象,直接赋值使用的是引用的方式。而有些情况下需要复制整个对象,这时可以使用copy包里的copy和deepcopy,这两个函数的不同之处在于deepcopy是递归复制的。效率不同:

In [23]: import copy
In [24]: %timeit -n 10 copy.copy(a)
10 loops, best of 3: 606 ns per loop
In [25]: %timeit -n 10 copy.deepcopy(a)
10 loops, best of 3: 1.17 us per loop

timeit后面的-n表示运行的次数,后两行对应的是两个timeit的输出,下同。由此可见后者慢一个数量级。

 关于copy的一个例子:

>>> lists = [[]] * 3
>>> lists
[[], [], []]
>>> lists[0].append(3)
>>> lists
[[3], [3], [3]]

发生的事情是这样的,[[]]是包含一个空列表的只有一个元素的列表,所以[[]] * 3的所有三个元素都是(指向)这个空列表。修改lists的任何元素都修改这个列表。修改效率高。

 八、使用dict或set查找元素

python 字典和集合都是使用hash表来实现(类似c++标准库unordered_map),查找元素的时间复杂度是O(1)。

In [1]: r = range(10**7)
In [2]: s = set(r) # 占用 588MB 内存
In [3]: d = dict((i, 1) for i in r) # 占用 716MB 内存
In [4]: %timeit -n 10000 (10**7) - 1 in r
10000 loops, best of 3: 291 ns per loop
In [5]: %timeit -n 10000 (10**7) - 1 in s
10000 loops, best of 3: 121 ns per loop
In [6]: %timeit -n 10000 (10**7) - 1 in d
10000 loops, best of 3: 111 ns per loop

结论:set 的内存占用量最小,dict运行时间最短。

九、合理使用(generator)和yield(节省内存)

In [1]: %timeit -n 10 a = (i for i in range(10**7)) # 生成器通常遍历更高效
10 loops, best of 3: 933 ns per loop
In [2]: %timeit -n 10 a = [i for i in range(10**7)]
10 loops, best of 3: 916 ms per loop
In [1]: %timeit -n 10 for x in (i for i in range(10**7)): pass
10 loops, best of 3: 749 ms per loop
In [2]: %timeit -n 10 for x in [i for i in range(10**7)]: pass
10 loops, best of 3: 1.05 s per loop

结论:尽量使用生成器去遍历。

以上就是对python 性能提升的一些方案,后续继续补充,需要的可以看下。

(0)

相关推荐

  • 实例探究Python以并发方式编写高性能端口扫描器的方法

    关于端口扫描器 端口扫描工具(Port Scanner)指用于探测服务器或主机开放端口情况的工具.常被计算机管理员用于确认安全策略,同时被攻击者用于识别目标主机上的可运作的网络服务. 端口扫描定义是客户端向一定范围的服务器端口发送对应请求,以此确认可使用的端口.虽然其本身并不是恶意的网络活动,但也是网络攻击者探测目标主机服务,以利用该服务的已知漏洞的重要手段.端口扫描的主要用途仍然只是确认远程机器某个服务的可用性. 扫描多个主机以获取特定的某个端口被称为端口清扫(Portsweep),以此获取特

  • Python编程之属性和方法实例详解

    本文实例讲述了Python编程中属性和方法使用技巧.分享给大家供大家参考.具体分析如下: 一.属性 在python中,属性分为公有属性和私有属性,公有属性可以在类的外部调用,私有属性不能在类的外部调用.公有属性可以是任意变量,私有属性是以双下划线开头的变量. 下面我们定义一个People类,它有一个公有属性name,和一个私有属性__age. class People(): def __init(self): self.name='张珊' self.__age=24 我们创建一个People类的

  • Python判断列表是否已排序的各种方法及其性能分析

    声明 本文基于Python2.7语言,给出判断列表是否已排序的多种方法,并在作者的Windows XP主机(Pentium G630 2.7GHz主频2GB内存)上对比和分析其性能表现. 一. 问题提出 Haskell培训老师提出一个问题:如何判断列表是否已经排序? 排序与否实际只是相邻元素间的某种二元关系,即a->a->Bool.所以第一步可以把二元组列表找出来:第二步是把这个函数作用于每个元组,然后用and操作.老师给出的实现代码如下: pair lst = zip lst ( tail

  • 菜鸟使用python实现正则检测密码合法性

    客户系统升级,要求用户密码符合一定的规则,即:包含大小写字母.数字.符号,长度不小于8,于是先用python写了个简单的测试程序: 在写解决方案前,列一下 python正则表达式中的特殊字符: ^          表示匹配的字符必须在最前边 $          表示匹配的字符必须在最后边 *          匹配* 前面的字符0次或n次 +          匹配+ 前面的字符1次或n次 ?          匹配?前面的字符0次或1次 .           (小数点)匹配除换行符外的所

  • Python Property属性的2种用法

    假设定义了一个类:C,该类必须继承自object类,有一私有变量_x 复制代码 代码如下: class C: def __init__(self): self.__x=None 1.现在介绍第一种使用属性的方法: 在该类中定义三个函数,分别用作赋值.取值和删除变量(此处表达也许不很清晰,请看示例) def getx(self): return self.__x def setx(self,value): self.__x=value def delx(self): del self.__x x=

  • 举例讲解Python面相对象编程中对象的属性与类的方法

    python 对象的属性 进入正题,来看一个实例来了解python中类,对象中公有属性,私有属性及局部变量,全局变量的区别. root@10.1.6.200:~# cat object.py #!/usr/bin/env python #coding:utf8 class Dave(): var1 = "class atribute,public atrribute var1" #类属性,公有属性var1 __var2 = "class self atribute __var

  • python通过函数属性实现全局变量的方法

    本文实例讲述了python通过函数属性实现全局变量的方法.分享给大家供大家参考.具体分析如下: python的函数可以定义属性,而且是全局的,这个非常好用,例如用于数字累加,你不用专门去定义一个全局变量,使用函数的属性即可. def add(x=1): try: add.sum += x except AttributeError: add.sum = x return add.sum print add(3) print add(4) print add(10) class Ax(object

  • python 性能提升的几种方法

    关于python 性能提升的一些方案. 一.函数调用优化(空间跨度,避免访问内存) 程序的优化核心点在于尽量减少操作跨度,包括代码执行时间上的跨度以及内存中空间跨度. 1.大数据求和,使用sum a = range(100000) %timeit -n 10 sum(a) 10 loops, best of 3: 3.15 ms per loop %%timeit ...: s = 0 ...: for i in a: ...: s += i ...: 100 loops, best of 3:

  • python字符串拼接的7种方法及性能比较详解

    python3.x拼接字符串一般有以下几种方法: 1. 直接通过(+)操作符拼接 s = 'Hello'+' '+'World'+'!' print(s) 输出结果: Hello World! 使用这种方式进行字符串连接的操作效率低下,因为python中使用 + 拼接两个字符串时会生成一个新的字符串,生成新的字符串就需要重新申请内存,当拼接字符串较多时自然会影响效率. 2. 通过str.join()方法拼接 strlist=['Hello',' ','World','!'] print(''.j

  • Python 连接 MySQL 的几种方法

    尽管很多 NoSQL 数据库近几年大放异彩,但是像 MySQL 这样的关系型数据库依然是互联网的主流数据库之一,每个学 Python 的都有必要学好一门数据库,不管你是做数据分析,还是网络爬虫,Web 开发.亦或是机器学习,你都离不开要和数据库打交道,而 MySQL 又是最流行的一种数据库,这篇文章介绍 Python 操作 MySQL 的几种方式,你可以在实际开发过程中根据实际情况合理选择. 1.MySQL-python MySQL-python 又叫 MySQLdb,是 Python 连接 M

  • python数据抓取3种方法总结

    三种数据抓取的方法 正则表达式(re库) BeautifulSoup(bs4) lxml *利用之前构建的下载网页函数,获取目标网页的html,我们以https://guojiadiqu.bmcx.com/AFG__guojiayudiqu/为例,获取html. from get_html import download url = 'https://guojiadiqu.bmcx.com/AFG__guojiayudiqu/' page_content = download(url) *假设我

  • Python列表删除的三种方法代码分享

    1.使用del语句删除元素 >>> i1 = ["a",'b','c','d'] >>> del i1[0] >>> print(i1) ['b', 'c', 'd'] >>> del语句将值从列表中删除后,就再也无法访问它了. 2.使用pop()删除元素 pop()可删除列表末尾的元素,并让你能够接着使用它.食欲弹出(pop)源自这样的类比:列表就是一个栈,而删除列表末尾的元素相当于弹出栈顶元素. >>

  • Python字符串拼接的几种方法整理

    Python字符串拼接的几种方法整理 第一种 通过加号(+)的形式 print('第一种方式通过加号形式连接 :' + 'love'+'Python' + '\n') 第二种 通过逗号(,)的形式 print('第二种方式通过逗号形式连接 :' + 'love', 'Python' + '\n') 第三种 直接连接 中间有无空格均可 print('第三种方式通过直接连接形式连接 (一) :' + 'love''Python' + '\n') print('第三种方式通过直接连接形式连接 (二)

  • Python更新数据库脚本两种方法及对比介绍

    最近项目的两次版本迭代中,根据业务需求的变化,需要对数据库进行更新,两次分别使用了不同的方式进行更新. 第一种:使用python的MySQLdb模块利用原生的sql语句进行更新 import MySQLdb #主机名 HOST = '127.0.0.1' #用户名 USER = "root" #密码 PASSWD = "123456" #数据库名 DB = "db_name" # 打开数据库连接 db=MySQLdb.connect(HOST,U

  • Python序列循环移位的3种方法推荐

    第一种方法:特点是直接.容易理解,缺点是速度慢,只能实现循环左移. def demo(lst, k): temp = lst[:] for i in range(k): temp.append(temp.pop(0)) return temp 第二种方法:特点是速度快,并且自适应循环左移(k>0)和右移(k<0),缺点是涉及到算法,不容易理解. def demo(lst, k): x = lst[:k] x.reverse() y = lst[k:] y.reverse() r = x+y r

  • 详解Python传入参数的几种方法

    Python传入参数的方法有:位置参数.默认参数.可变参数.关键字参数.和命名关键字参数.以及各种参数调用的组合 写在前面 Python唯一支持的参数传递方式是『共享传参』(call by sharing) 多数面向对象语言都采用这一模式,包括Ruby.Smalltalk和Java(Java的引用类型是这样,基本类型按值传递) 共享传参是指函数的各个形式参数获得实参中各个引用的副本:也就是说,函数内部的形参是实参的别名(alias) 这种方案的结果是,函数可能会修改作为参数传入的可变对象,但是无

  • 对Python获取屏幕截图的4种方法详解

    Python获取电脑截图有多种方式,具体如下: PIL中的ImageGrab模块 windows API PyQt pyautogui PIL中的ImageGrab模块 import time import numpy as np from PIL import ImageGrab img = ImageGrab.grab(bbox=(100, 161, 1141, 610)) img = np.array(img.getdata(), np.uint8).reshape(img.size[1]

随机推荐