算法系列15天速成 第三天 七大经典排序【下】

直接插入排序:

这种排序其实蛮好理解的,很现实的例子就是俺们斗地主,当我们抓到一手乱牌时,我们就要按照大小梳理扑克,30秒后,

扑克梳理完毕,4条3,5条s,哇塞......  回忆一下,俺们当时是怎么梳理的。

最左一张牌是3,第二张牌是5,第三张牌又是3,赶紧插到第一张牌后面去,第四张牌又是3,大喜,赶紧插到第二张后面去,

第五张牌又是3,狂喜,哈哈,一门炮就这样产生了。

怎么样,生活中处处都是算法,早已经融入我们的生活和血液。

下面就上图说明:             

看这张图不知道大家可否理解了,在插入排序中,数组会被划分为两种,“有序数组块”和“无序数组块”,

对的,第一遍的时候从”无序数组块“中提取一个数20作为有序数组块。

第二遍的时候从”无序数组块“中提取一个数60有序的放到”有序数组块中“,也就是20,60。

第三遍的时候同理,不同的是发现10比有序数组的值都小,因此20,60位置后移,腾出一个位置让10插入。

然后按照这种规律就可以全部插入完毕。

代码如下:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace InsertSort
{
    public class Program
    {
        static void Main(string[] args)
        {
            List<int> list = new List<int>() { 3, 1, 2, 9, 7, 8, 6 };

Console.WriteLine("排序前:" + string.Join(",", list));

InsertSort(list);

Console.WriteLine("排序后:" + string.Join(",", list));
        }

static void InsertSort(List<int> list)
        {
            //无须序列
            for (int i = 1; i < list.Count; i++)
            {
                var temp = list[i];

int j;

//有序序列
                for (j = i - 1; j >= 0 && temp < list[j]; j--)
                {
                    list[j + 1] = list[j];
                }
                list[j + 1] = temp;
            }
        }
    }
}

希尔排序:

观察一下”插入排序“:其实不难发现她有个缺点:

如果当数据是”5, 4, 3, 2, 1“的时候,此时我们将“无序块”中的记录插入到“有序块”时,估计俺们要崩盘,

每次插入都要移动位置,此时插入排序的效率可想而知。

shell根据这个弱点进行了算法改进,融入了一种叫做“缩小增量排序法”的思想,其实也蛮简单的,不过有点注意的就是:

增量不是乱取,而是有规律可循的。

首先要明确一下增量的取法:

第一次增量的取法为: d=count/2;

第二次增量的取法为:  d=(count/2)/2;

最后一直到: d=1;

看上图观测的现象为:

d=3时:将40跟50比,因50大,不交换。

将20跟30比,因30大,不交换。

将80跟60比,因60小,交换。

d=2时:将40跟60比,不交换,拿60跟30比交换,此时交换后的30又比前面的40小,又要将40和30交换,如上图。

将20跟50比,不交换,继续将50跟80比,不交换。

d=1时:这时就是前面讲的插入排序了,不过此时的序列已经差不多有序了,所以给插入排序带来了很大的性能提高。

既然说“希尔排序”是“插入排序”的改进版,那么我们就要比一下,在1w个数字中,到底能快多少?

下面进行一下测试:

代码如下:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Diagnostics;

namespace ShellSort
{
    public class Program
    {
        static void Main(string[] args)
        {
            //5次比较
            for (int i = 1; i <= 5; i++)
            {
                List<int> list = new List<int>();

//插入1w个随机数到数组中
                for (int j = 0; j < 10000; j++)
                {
                    Thread.Sleep(1);
                    list.Add(new Random((int)DateTime.Now.Ticks).Next(10000, 1000000));
                }

List<int> list2 = new List<int>();
                list2.AddRange(list);

Console.WriteLine("\n第" + i + "次比较:");

Stopwatch watch = new Stopwatch();

watch.Start();
                InsertSort(list);
                watch.Stop();

Console.WriteLine("\n插入排序耗费的时间:" + watch.ElapsedMilliseconds);
                Console.WriteLine("输出前十个数:" + string.Join(",", list.Take(10).ToList()));

watch.Restart();
                ShellSort(list2);
                watch.Stop();

Console.WriteLine("\n希尔排序耗费的时间:" + watch.ElapsedMilliseconds);
                Console.WriteLine("输出前十个数:" + string.Join(",", list2.Take(10).ToList()));

}
        }

///<summary>
/// 希尔排序
///</summary>
///<param name="list"></param>
        static void ShellSort(List<int> list)
        {
            //取增量
            int step = list.Count / 2;

while (step >= 1)
            {
                //无须序列
                for (int i = step; i < list.Count; i++)
                {
                    var temp = list[i];

int j;

//有序序列
                    for (j = i - step; j >= 0 && temp < list[j]; j = j - step)
                    {
                        list[j + step] = list[j];
                    }
                    list[j + step] = temp;
                }
                step = step / 2;
            }
        }

///<summary>
/// 插入排序
///</summary>
///<param name="list"></param>
        static void InsertSort(List<int> list)
        {
            //无须序列
            for (int i = 1; i < list.Count; i++)
            {
                var temp = list[i];

int j;

//有序序列
                for (j = i - 1; j >= 0 && temp < list[j]; j--)
                {
                    list[j + 1] = list[j];
                }
                list[j + 1] = temp;
            }
        }
    }
}

截图如下:

看的出来,希尔排序优化了不少,w级别的排序中,相差70几倍哇。

归并排序:

个人感觉,我们能容易看的懂的排序基本上都是O (n^2),比较难看懂的基本上都是N(LogN),所以归并排序也是比较难理解的,尤其是在代码

编写上,本人就是搞了一下午才搞出来,嘻嘻。

首先看图:

归并排序中中两件事情要做:

第一: “分”,  就是将数组尽可能的分,一直分到原子级别。

第二: “并”,将原子级别的数两两合并排序,最后产生结果。

代码:

代码如下:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace MergeSort
{
    class Program
    {
        static void Main(string[] args)
        {
            int[] array = { 3, 2, 1, 8, 9, 0 };

MergeSort(array, new int[array.Length], 0, array.Length - 1);

Console.WriteLine(string.Join(",", array));
        }

///<summary>
/// 数组的划分
///</summary>
///<param name="array">待排序数组</param>
///<param name="temparray">临时存放数组</param>
///<param name="left">序列段的开始位置,</param>
///<param name="right">序列段的结束位置</param>
        static void MergeSort(int[] array, int[] temparray, int left, int right)
        {
            if (left < right)
            {
                //取分割位置
                int middle = (left + right) / 2;

//递归划分数组左序列
                MergeSort(array, temparray, left, middle);

//递归划分数组右序列
                MergeSort(array, temparray, middle + 1, right);

//数组合并操作
                Merge(array, temparray, left, middle + 1, right);
            }
        }

///<summary>
/// 数组的两两合并操作
///</summary>
///<param name="array">待排序数组</param>
///<param name="temparray">临时数组</param>
///<param name="left">第一个区间段开始位置</param>
///<param name="middle">第二个区间的开始位置</param>
///<param name="right">第二个区间段结束位置</param>
        static void Merge(int[] array, int[] temparray, int left, int middle, int right)
        {
            //左指针尾
            int leftEnd = middle - 1;

//右指针头
            int rightStart = middle;

//临时数组的下标
            int tempIndex = left;

//数组合并后的length长度
            int tempLength = right - left + 1;

//先循环两个区间段都没有结束的情况
            while ((left <= leftEnd) && (rightStart <= right))
            {
                //如果发现有序列大,则将此数放入临时数组
                if (array[left] < array[rightStart])
                    temparray[tempIndex++] = array[left++];
                else
                    temparray[tempIndex++] = array[rightStart++];
            }

//判断左序列是否结束
            while (left <= leftEnd)
                temparray[tempIndex++] = array[left++];

//判断右序列是否结束
            while (rightStart <= right)
                temparray[tempIndex++] = array[rightStart++];

//交换数据
            for (int i = 0; i < tempLength; i++)
            {
                array[right] = temparray[right];
                right--;
            }
        }
    }
}

结果图:

ps: 插入排序的时间复杂度为:O(N^2)

希尔排序的时间复杂度为:平均为:O(N^3/2)

最坏: O(N^2)

归并排序时间复杂度为: O(NlogN)

空间复杂度为:  O(N)

(0)

相关推荐

  • 算法系列15天速成 第十天 栈

    一: 概念 栈,同样是一种特殊的线性表,是一种Last In First Out(LIFO)的形式,现实中有很多这样的例子, 比如:食堂中的一叠盘子,我们只能从顶端一个一个的取. 二:存储结构 "栈"不像"队列",需要两个指针来维护,栈只需要一个指针就够了,这得益于栈是一种一端受限的线性表. 这里同样用"顺序结构"来存储这个"栈",top指针指向栈顶,所有的操作只能在top处. 代码段: 复制代码 代码如下: #region

  • 算法系列15天速成 第九天 队列

    一:概念 队列是一个"先进先出"的线性表,牛X的名字就是"First in First Out(FIFO)",生活中有很多这样的场景,比如读书的时候去食堂打饭时的"排队".当然我们拒绝插队. 二:存储结构 前几天也说过,线性表有两种"存储结构",① 顺序存储,②链式存储.当然"队列"也脱离不了这两种服务,这里我就分享一下"顺序存储". 顺序存储时,我们会维护一个叫做"head头

  • 算法系列15天速成 第十二天 树操作【中】

    先前说了树的基本操作,我们采用的是二叉链表来保存树形结构,当然二叉有二叉的困扰之处,比如我想找到当前结点的"前驱"和"后继",那么我们就必须要遍历一下树,然后才能定位到该"节点"的"前驱"和"后继",每次定位都是O(n),这不是我们想看到的,那么有什么办法来解决呢? (1) 在节点域中增加二个指针域,分别保存"前驱"和"后继",那么就是四叉链表了,哈哈,还是有点浪费空

  • 算法系列15天速成 第二天 七大经典排序【中】

    首先感谢朋友们对第一篇文章的鼎力支持,感动中.......  今天说的是选择排序,包括"直接选择排序"和"堆排序". 话说上次"冒泡排序"被快排虐了,而且"快排"赢得了内库的重用,众兄弟自然眼红,非要找快排一比高下. 这不今天就来了两兄弟找快排算账. 1.直接选择排序: 先上图: 说实话,直接选择排序最类似于人的本能思想,比如把大小不一的玩具让三岁小毛孩对大小排个序, 那小孩首先会在这么多玩具中找到最小的放在第一位,然后找到次

  • 算法系列15天速成 第六天 五大经典查找【下】

    大家是否感觉到,树在数据结构中大行其道,什么领域都要沾一沾,碰一碰.就拿我们前几天学过的排序就用到了堆和今天讲的"二叉排序树",所以偏激的说,掌握的树你就是牛人了. 今天就聊聊这个"五大经典查找"中的最后一个"二叉排序树". 1. 概念:     <1> 其实很简单,若根节点有左子树,则左子树的所有节点都比根节点小.                             若根节点有右子树,则右子树的所有节点都比根节点大.     &

  • 算法系列15天速成 第八天 线性表【下】

    一:线性表的简单回顾 上一篇跟大家聊过"线性表"顺序存储,通过实验,大家也知道,如果我每次向顺序表的头部插入元素,都会引起痉挛,效率比较低下,第二点我们用顺序存储时,容易受到长度的限制,反之就会造成空间资源的浪费. 二:链表 对于顺序表存在的若干问题,链表都给出了相应的解决方案. 1. 概念:其实链表的"每个节点"都包含一个"数据域"和"指针域". "数据域"中包含当前的数据. "指针域"

  • 算法系列15天速成 第五天 五大经典查找【中】

    哈希查找: 对的,他就是哈希查找,说到哈希,大家肯定要提到哈希函数,呵呵,这东西已经在我们脑子里面形成固有思维了.大家一定要知道"哈希"中的对应关系.     比如说: "5"是一个要保存的数,然后我丢给哈希函数,哈希函数给我返回一个"2",那么此时的"5"和"2"就建立一种对应关系,这种关系就是所谓的"哈希关系",在实际应用中也就形成了"2"是key,"5

  • 算法系列15天速成 第十四天 图【上】

    今天来分享一下图,这是一种比较复杂的非线性数据结构,之所以复杂是因为他们的数据元素之间的关系是任意的,而不像树那样 被几个性质定理框住了,元素之间的关系还是比较明显的,图的使用范围很广的,比如网络爬虫,求最短路径等等,不过大家也不要胆怯, 越是复杂的东西越能体现我们码农的核心竞争力. 既然要学习图,得要遵守一下图的游戏规则. 一: 概念 图是由"顶点"的集合和"边"的集合组成.记作:G=(V,E): <1> 无向图 就是"图"中的边没

  • 算法系列15天速成 第一天 七大经典排序【上】

    针对现实中的排序问题,算法有七把利剑可以助你马道成功. 首先排序分为四种:       交换排序: 包括冒泡排序,快速排序.      选择排序: 包括直接选择排序,堆排序.      插入排序: 包括直接插入排序,希尔排序.      合并排序: 合并排序. 那么今天我们讲的就是交换排序,我们都知道,C#类库提供的排序是快排,为了让今天玩的有意思点,我们设计算法来跟类库提供的快排较量较量.争取KO对手. 冒泡排序: 首先我们自己来设计一下"冒泡排序",这种排序很现实的例子就是:我抓一

  • 算法系列15天速成——第十五天 图【下】(大结局)

    今天是大结局,说下"图"的最后一点东西,"最小生成树"和"最短路径". 一: 最小生成树 1. 概念 首先看如下图,不知道大家能总结点什么. 对于一个连通图G,如果其全部顶点和一部分边构成一个子图G1,当G1满足: ① 刚好将图中所有顶点连通.②顶点不存在回路.则称G1就是G的"生成树". 其实一句话总结就是:生成树是将原图的全部顶点以最小的边连通的子图,这不,如下的连通图可以得到下面的两个生成树. ② 对于一个带权的连通图,

  • 算法系列15天速成 第十一天 树操作(上)

    先前我们讲的都是"线性结构",他的特征就是"一个节点最多有一个"前驱"和一个"后继".那么我们今天讲的树会是怎样的呢? 我们可以对"线性结构"改造一下,变为"一个节点最多有一个"前驱"和"多个后继".哈哈,这就是我们今天说的"树". 一: 树 我们思维中的"树"就是一种枝繁叶茂的形象,那么数据结构中的"树"该

  • 算法系列15天速成 第七天 线性表【上】

    哈哈,我们的数据也一样,存在这三种基本关系,用术语来说就是: <1>  线性关系.<2>  树形关系.<3>  网状关系. 一: 线性表 1 概念:                 线性表也就是关系户中最简单的一种关系,一对一.                  如:学生学号的集合就是一个线性表. 2 特征:                 ① 有且只有一个"首元素".                 ② 有且只有一个"末元素".

  • 算法系列15天速成 第四天 五大经典查找【上】

    在我们的算法中,有一种叫做线性查找. 分为:顺序查找.        折半查找. 查找有两种形态: 分为:破坏性查找,   比如有一群mm,我猜她们的年龄,第一位猜到了是23+,此时这位mm已经从我脑海里面的mmlist中remove掉了. 哥不找23+的,所以此种查找破坏了原来的结构. 非破坏性查找, 这种就反之了,不破坏结构. 顺序查找: 这种非常简单,就是过一下数组,一个一个的比,找到为止. 复制代码 代码如下: using System;using System.Collections.

  • 算法系列15天速成——第十三天 树操作【下】

    听说赫夫曼胜过了他的导师,被认为"青出于蓝而胜于蓝",这句话也是我比较欣赏的,嘻嘻. 一  概念 了解"赫夫曼树"之前,几个必须要知道的专业名词可要熟练记住啊. 1: 结点的权 "权"就相当于"重要度",我们形象的用一个具体的数字来表示,然后通过数字的大小来决定谁重要,谁不重要. 2: 路径 树中从"一个结点"到"另一个结点"之间的分支. 3: 路径长度 一个路径上的分支数量. 4: 树

随机推荐