Java通过卖票理解多线程

以卖票的例子来介绍多线程和资源共享,下面我们来看看为什么要用卖票作为例子。

  卖票是包含一系列动作的过程,有各种操作,例如查询票、收钱、数钱、出票等,其中有一个操作是每次卖掉一张,就将总的票数减去1。有10张票,如果一个人卖票,先做查票、收钱、数钱等各种操作,再将总的票数减去1,效率很低。如果多个人卖票,每个人都是做同样的操作,数钱、检查钱,最后将总的票数减1,这样效率高。但是有一个问题,如果出现两个人同时将总的票数减掉了1,例如,A、B两个人同时读取到票的总数是10,A从中减去1,同时B也从中减去1,总数显示是9,其实票只有8张。导致数据错误。

  按照正常逻辑,同一时刻只允许一个人来从总票数中减去1,A读取总票数,再减去1的过程中,B必须等待,等A操作完了,B才能进行。其实票就是共享资源,一次只能由一个人访问。这里就要用到同步机制,即锁机制,使用关键词synchronized将读取总的票数,并减去1的操作锁定,使得一次只能由一个人访问。每个售票员就是一个线程,多个售票员进行同一项卖票任务。

  synchronized原理是,执行synchronized部分代码的时候必须需要对象锁,而一个对象只有一个锁,只有执行完synchronized里面的代码后释放锁,其他线程才可以获得锁,那么就保证了同一时刻只有一个线程访问synchronized里面的代码。使得资源共享的关键是,只有一个实例,synchronized使用的是同一把锁,用实例的锁或者定义一个实例。这就需要使用实现Runnable接口的方式,实现多线程,这样传入的是一个实例。继承Thread的方式,传入的是多个实例,每个实例都有一个锁,那就无法实现控制。

具体代码如下:

package com.test;
public class SaleTickets implements Runnable
{
  private int ticketCount = 10;// 总的票数,这个是共享资源,多个线程都会访问
  Object mutex = new Object();// 锁,自己定义的,或者使用实例的锁
  /**
   * 卖票
   */
  public void sellTicket()
  {
    synchronized (mutex)// 当操作的是共享数据时,
            // 用同步代码块进行包围起来,执行里面的代码需要mutex的锁,但是mutex只有一个锁。这样在执行时,只能有一个线程执行同步代码块里面的内容
    {
      if (ticketCount > 0)
      {
        ticketCount--;
        System.out.println(Thread.currentThread().getName()
            + "正在卖票,还剩" + ticketCount + "张票");
      }
      else
      {
        System.out.println("票已经卖完!");
        return;
      }
    }
  }
  public void run()
  {
    while (ticketCount > 0)// 循环是指线程不停的去卖票
    {
      sellTicket();
      /**
       * 在同步代码块里面睡觉,和不睡效果是一样 的,作用只是自已不执行,也不让线程执行。sleep不释放锁,抱着锁睡觉。其他线程拿不到锁,也不能执行同步代码。wait()可以释放锁
       * 所以把睡觉放到同步代码块的外面,这样卖完一张票就睡一会,让其他线程再卖,这样所有的线程都可以卖票
       */
      try
      {
        Thread.sleep(100);
      }
      catch (InterruptedException e)
      {
        e.printStackTrace();
      }
    }
  }
}

下面是调用:

package com.test;
public class TicketMain
{
  public static void main(String[] args)
  {
    SaleTickets runTicekt = new SaleTickets();//只定义了一个实例,这就只有一个Object mutex = new Object();即一个锁。
    Thread th1 = new Thread(runTicekt, "窗口1");//每个线程等其他线程释放该锁后,才能执行
    Thread th2 = new Thread(runTicekt, "窗口2");
    Thread th3 = new Thread(runTicekt, "窗口3");
    Thread th4 = new Thread(runTicekt, "窗口4");
    th1.start();
    th2.start();
    th3.start();
    th4.start();
  }
}

输出:

窗口1正在卖票,还剩9张票
窗口4正在卖票,还剩8张票
窗口3正在卖票,还剩7张票
窗口2正在卖票,还剩6张票
窗口3正在卖票,还剩5张票
窗口2正在卖票,还剩4张票
窗口1正在卖票,还剩3张票
窗口4正在卖票,还剩2张票
窗口3正在卖票,还剩1张票
窗口1正在卖票,还剩0张票
票已经卖完!

  这是多个线程,完成同一个任务的情况,即多个线程调用同一个实例,通过实现Runable接口实现。多个线程可以异步的做这个任务中其他事情,但是对于共享资源的访问只能以同步的方式操作,即一个接一个访问共享资源,其他资源可以并行访问。

  另一种实现多线程的方式是继承Thread,调用的时候需要传递多个实例,这是多个线程,多个实例的情况,每个线程独立处理一个实例,各个线程不能实现资源共享。

总结

以上是本文关于通过卖票实例理解多线程的全部内容,希望对大家有所帮助。

(0)

相关推荐

  • 浅谈Java多线程处理中Future的妙用(附源码)

    java 中Future是一个未来对象,里面保存这线程处理结果,它像一个提货凭证,拿着它你可以随时去提取结果.在两种情况下,离开Future几乎很难办.一种情况是拆分订单,比如你的应用收到一个批量订单,此时如果要求最快的处理订单,那么需要并发处理,并发的结果如果收集,这个问题如果自己去编程将非常繁琐,此时可以使用CompletionService解决这个问题.CompletionService将Future收集到一个队列里,可以按结果处理完成的先后顺序进队.另外一种情况是,如果你需要并发去查询一

  • RxJava2.x+ReTrofit2.x多线程下载文件的示例代码

    写在前面: 接到公司需求:要做一个apk升级的功能,原理其实很简单,百度也一大堆例子,可大部分都是用框架,要么就是HttpURLConnection,实在是不想这么干.正好看了两天的RxJava2.x+ReTrofit2.x,据说这俩框架是目前最火的异步请求框架了.固本文使用RxJava2.x+ReTrofit2.x实现多线程下载文件的功能. 如果对RxJava2.x+ReTrofit2.x不太了解的请先去看相关的文档. 大神至此请无视. 思路分析: 思路及其简洁明了,主要分为以下四步 1.获取

  • java 多线程的同步几种方法

    java 多线程的同步几种方法 一.引言 前几天面试,被大师虐残了,好多基础知识必须得重新拿起来啊.闲话不多说,进入正题. 二.为什么要线程同步 因为当我们有多个线程要同时访问一个变量或对象时,如果这些线程中既有读又有写操作时,就会导致变量值或对象的状态出现混乱,从而导致程序异常.举个例子,如果一个银行账户同时被两个线程操作,一个取100块,一个存钱100块.假设账户原本有0块,如果取钱线程和存钱线程同时发生,会出现什么结果呢?取钱不成功,账户余额是100.取钱成功了,账户余额是0.那到底是哪个

  • Java多线程ForkJoinPool实例详解

    引言 java 7提供了另外一个很有用的线程池框架,Fork/Join框架 理论 Fork/Join框架主要有以下两个类组成. * ForkJoinPool 这个类实现了ExecutorService接口和工作窃取算法(Work-Stealing Algorithm).它管理工作者线程,并提供任务的状态信息,以及任务的执行信息 * ForkJoinTask 这个类是一个将在ForkJoinPool执行的任务的基类. Fork/Join框架提供了在一个任务里执行fork()和join()操作的机制

  • Java基于Socket实现简单的多线程回显服务器功能示例

    本文实例讲述了Java基于Socket实现简单的多线程回显服务器功能.分享给大家供大家参考,具体如下: 需要两个类,一个是EchoServer,代表服务器.另外一个是EchoServerClient,代表客户端.代码如下: package interview; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter

  • 详解Java中多线程异常捕获Runnable的实现

    详解Java中多线程异常捕获Runnable的实现 1.背景: Java 多线程异常不向主线程抛,自己处理,外部捕获不了异常.所以要实现主线程对子线程异常的捕获. 2.工具: 实现Runnable接口的LayerInitTask类,ThreadException类,线程安全的Vector 3.思路: 向LayerInitTask中传入Vector,记录异常情况,外部遍历,判断,抛出异常. 4.代码: package step5.exception; import java.util.Vector

  • Java利用future及时获取多线程运行结果

    Future接口是Java标准API的一部分,在java.util.concurrent包中.Future接口是Java线程Future模式的实现,可以来进行异步计算. 有了Future就可以进行三段式的编程了,1.启动多线程任务2.处理其他事3.收集多线程任务结果.从而实现了非阻塞的任务调用.在途中遇到一个问题,那就是虽然能异步获取结果,但是Future的结果需要通过isdone来判断是否有结果,或者使用get()函数来阻塞式获取执行结果.这样就不能实时跟踪其他线程的结果状态了,所以直接使用g

  • Java通过卖票理解多线程

    以卖票的例子来介绍多线程和资源共享,下面我们来看看为什么要用卖票作为例子. 卖票是包含一系列动作的过程,有各种操作,例如查询票.收钱.数钱.出票等,其中有一个操作是每次卖掉一张,就将总的票数减去1.有10张票,如果一个人卖票,先做查票.收钱.数钱等各种操作,再将总的票数减去1,效率很低.如果多个人卖票,每个人都是做同样的操作,数钱.检查钱,最后将总的票数减1,这样效率高.但是有一个问题,如果出现两个人同时将总的票数减掉了1,例如,A.B两个人同时读取到票的总数是10,A从中减去1,同时B也从中减

  • java实现多线程卖票功能

    java多线程卖票直接先看个例子: public class SelTicketsMainTest { public static void main(String[] args) { SaleTickets1 saleTickets = new SaleTickets1(); for(int t=1;t<=3;t++) { new Thread(saleTickets).start(); } } } class SaleTickets1 implements Runnable{ private

  • 多线程(多窗口卖票实例讲解)

    实现多线程的方式: 实现多线程的方式有多种,这里只列举两种常用的,而第一种继承Thread的方式无法实现多窗口卖票. 一,继承Thread方式: 特点:多线程多实例,无法实现资源的共享. 例子: package com.demo.study.multithreading; public class MyThread extends Thread{ private int i = 10; // 可以自行定义锁,也可以使用实例的锁 Object mutex = new Object(); publi

  • Java线程创建(卖票),线程同步(卖包子)的实现示例

    1.线程两种创建方式:new Thread(new Runnable() {}) 如下FileOutputStream源码中抛出异常,为了让写代码人自己写try catch异常提示信息. package com.itheim07.thread; /* * 进程和线程 * 1. 进程 : 航空母舰(资源: 燃油 弹药) * 2. 线程 : 舰载机 * 一个软件运行: 一个军事活动, 必须有一艘航母出去,但执行具体任务的是航母上的舰载机 * 一个软件运行,至少一个进程, 一个进程中至少一个线程.谷歌

  • Java Runnable和Thread实现多线程哪个更好你知道吗

    目录 1.避免由于Java单继承带来的局限性 2.可以实现业务执行逻辑和数据资源的分离 3.可以与线程池配合使用,从而管理线程的生命周期 总结 实现Runnable 接口比继承Thread 类的方式更好: (1)可以避免由于Java单继承带来的局限性: (2)可以实现业务执行逻辑和数据资源的分离: (3)可以与线程池配合使用,从而管理线程的生命周期: 1. 避免由于Java单继承带来的局限性 如果异步逻辑所在类已经继承了一个基类,就没有办法再继承Thread类.比如,当一个Dog类继承了Pet类

  • java String的深入理解

    java String的深入理解 一.Java内存模型  按照官方的说法:Java 虚拟机具有一个堆,堆是运行时数据区域,所有类实例和数组的内存均从此处分配. JVM主要管理两种类型内存:堆和非堆,堆内存(Heap Memory)是在 Java 虚拟机启动时创建,非堆内存(Non-heap Memory)是在JVM堆之外的内存. 简单来说,非堆包含方法区.JVM内部处理或优化所需的内存(如 JITCompiler,Just-in-time Compiler,即时编译后的代码缓存).每个类结构(如

  • Java并发编程深入理解之Synchronized的使用及底层原理详解 上

    目录 一.线程安全问题 1.临界资源 2.线程安全问题 3.如何解决线程安全问题 二.synchronized使用介绍 三.synchronized实现原理 1.synchronized底层指令:monitorenter和monitorexit 2.Object Monitor(监视器锁)机制 一.线程安全问题 1.临界资源 多线程编程中,有可能会出现多个线程同时访问同一个共享.可变资源的情况,这个资源我们称之其为临界资源:这种资源可能是:对象.变量.文件等. 共享:资源可以由多个线程同时访问

  • Java五种方式实现多线程循环打印问题

    目录 wait-notify join方式 ReentrantLock ReentrantLock+Condition Semaphore 三个线程T1.T2.T3轮流打印ABC,打印n次,如ABCABCABCABC- N个线程循环打印1-100- wait-notify 循环打印问题可以通过设置目标值,每个线程想打印目标值,如果拿到锁后这次轮到的数不是它想要的就进入wait class Wait_Notify_ABC { private int num; private static fina

  • Java指令重排序在多线程环境下的处理方法

    目录 一.序言 二.问题复原 (一)关联变量 1.结果预测 2.指令重排 (二)new创建对象 1.解析创建过程 2.重排序过程分析 三.应对指令重排 (一)AtomicReference原子类 (二)volatile关键字 1.指令重排广泛存在 2.多线程环境指令重排 3.synchronized锁与重排序无关 四.指令重排的理解 一.序言 指令重排在单线程环境下有利于提高程序的执行效率,不会对程序产生负面影响:在多线程环境下,指令重排会给程序带来意想不到的错误. 本文对多线程指令重排问题进行

随机推荐