Python数据可视化之matplotlib.pyplot绘图的基本参数详解

目录
  • 1.matplotlib简介
  • 2.图形组成元素的函数用法
    • 2.1. figure():背景颜色
    • 2.2 xlim()和 ylim():设置 x,y 轴的数值显示范围
    • 2.3 xlabel()和 ylabel():设置 x,y 轴的标签文本
    • 2.4 grid():绘制刻度线的网格线
    • 2.5 axhline():绘制平行于 x 轴额度水平参考线
    • 2.6 axvspan():绘制垂直于 x 轴的参考区域
    • 2.7 xticks(),yticks()
    • 2.8 annotate():添加图形内容细节的指向型注释文本
    • 2.9 bbox:给标题增加外框
    • 2.10 . text():添加图形内容细节的无指向型注释文本(水印)
    • 2.11. title():添加图形内容的标题
    • 2.12. legend():标示不同图形的文本标签图例
    • 2.13 table():向子图中添加表格
  • 3. 完整代码显示
  • 4.折线图的线条风格
  • 5. 常用颜色缩写
  • 6.总结

1.matplotlib简介

matplotlib 库是 Python 中绘制二维和三维图表的数据可视化工具

特点:

使用简单绘图语句实现复杂绘图效果

以交互式操作实现渐趋精细的图形效果

使用嵌入式 LaTex 输出具有印刷级别的图表、科学表达式和符号文本

对图表的组成元素实现精细化控制

三种绘图接口

  • pyplot:面向当前图
  • axes:面向对象
  • Pylab:沿用 matlab 风格

本篇文章使用plot绘图(展示变量的趋势变化 )展示绘图的基本参数,使用numpy库获得绘图数据(随机),最后出来的图形并非经过仔细思考,一切以展示图形参数为主!!!

使用的库:

import matplotlib.pyplot as plt
import numpy as np

2.图形组成元素的函数用法

plot():展示变量的趋势变化

使用方法:plt.plot(x, y, c,ls, lw, label, alpha, **kwargs)

  • x,y:x,y 轴上的数值
  • c:设置颜色
  • ls:折线图的线条风格
  • lw:折线图的线条宽度
  • label:标记图形内容的标签文本
  • alpha:透明度
  • **kwargs:指定使用的是 line2D 属性

2.1. figure():背景颜色

使 用 方 法 :figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True, FigureClass=Figure, clear=False, **kwargs)

num :

如果此参数没有提供,则一个新的 figure 对象将被创建,同时增加 figure 的计数数值,此数值被保存在 figure 对象的一个数字属性当中。如果有此参数,且存在对应 id 的 figure 对象,则激活对于 id 的 figure 对象。如果对应 id 的 figur 对象不存在,则创建它并返回它。如果 num 的值是字符串,则将窗口标题设置为此字符串

figsize:以英寸为单位的宽高,缺省值为 rc figure.figsize (1 英寸等于 2.54 厘米)

dpi:图形分辨率,缺省值为 rc figure.dpi

facecolor:背景色

plt.figure(figsize=(10, 10))
x = np.linspace(0.05, 10, 1000)  # 在0.05到10的区间中,等差选取1000个,端点不属于
y = np.sin(x)
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.plot(x, y,
         color='red',
         ls='-',
         label='sinx')
plt.show()

2.2 xlim()和 ylim():设置 x,y 轴的数值显示范围

使用方法:plt.xlim(xmin,xmax)

  • xmin:x 轴上的最小值
  • xmax:x 轴上的最大值

2.3 xlabel()和 ylabel():设置 x,y 轴的标签文本

使用方法:plt.xlabel(fontsize, verticalalignment, horizontalalignment, rotation, bbox)

  • fontsize:数字或者(small,large,medium)
  • verticalalignment:距离坐标轴的位置(top,bottom,center,baseline)
  • hoizontalalignment:位置(center,right,left)
  • ratation:位置(vertical,horizontal,vertical)
  • bbox:添加边框

2.4 grid():绘制刻度线的网格线

使用方法:plt.grid(linestyle, color)

2.5 axhline():绘制平行于 x 轴额度水平参考线

使用方法:plt.axhline(y, c, ls, lw, label)

y:水平参考线的出发点

plt.figure(figsize=(10, 10))
x = np.linspace(0.05, 10, 1000)  # 在0.05到10的区间中,等差选取1000个,端点不属于
y = np.sin(x)
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.plot(x, y,
         color='red',
         ls='-',
         label='sinx')
plt.xlim(1, 10)
plt.ylim(-1, 1)
plt.xlabel('x轴')
plt.ylabel('y轴')
plt.grid(ls=':',
         color='blue')  # 设置网格,颜色为蓝色
plt.axhline(0.5, color='green', lw=2, label="分割线")  # 绘制平行于x轴的水平参考线,绿色,名称
plt.show()

(上图中绿色的线即为axjline()添加的参考线)

2.6 axvspan():绘制垂直于 x 轴的参考区域

使用方法:plt.axvspan( xmin, xmax ,facecolor, alpha)

  • xmin:参考区域的起始位置
  • xmax:参考区域的终止位置
  • facecolor:参考区域的填充颜色
  • alpha:参考区域填充颜色的透明度,[0~1]

注:其使用方法也可以用在 axhspan()上

在上一段代码添加

plt.axvspan(xmin=2,
            xmax=5,
            facecolor='r',
            alpha=0.2)  # 绘制垂直于x轴的参考区域

即得到(注意:此段是区域)

2.7 xticks(),yticks()

获取或设置当前 x 轴或 y 轴刻度位置和标签(即设置 x 或 y 轴的标 签)

可以理解为设置xilim和ylim一样的效果,但可以指定范围和距离

plt.xticks(list(range(0, 12, 1)))  # 调整刻度范围和刻度标签

注意看x轴,从原来的0~10到现在的0~11,可以通过设置第三个参数设置步长,这里设置为1

2.8 annotate():添加图形内容细节的指向型注释文本

函数方法:plt.annotate()

  • s:注释文本内容
  • xy:被注释的坐标点
  • xytext:注释文字的坐标位置
  • weight:设置字体线形(Ultralight,light,normal,regular,book,medium,roman,semibold,demibold,demi,bold,heavy,extrabold,black)
  • color:设置字体颜色;也可以设置 RGB 或 RGBA 类型的颜色;但必须为[0,1]之间的浮点 数

xycoords= 参数如下

  • figure points:图左下角的点
  • figure pixels:图左下角的像素
  • figure fraction:图的左下部分
  • axes points:坐标轴左下的点
  • axes pixels:坐标轴左下的像素
  • data:使用被注释对象的坐标系统
  • arrowprops:箭头参数,参数类型为字典 dict
  • width:箭头的宽度
  • headwidth:箭头底部以点为单位的宽度
  • headlength:箭头的长度
  • shrink:总长度的一部分,从两端“收缩”
  • facecolor:箭头颜色(如果设置了 arrowstyle 关键字,上面的参数都不可以用,可

以用这些:

  • -
  • ->
  • -[
  • |-|
  • -|>
  • <->
  • <|-
  • <|-|>
  • fancy
  • simple
  • wedge)
plt.annotate('local',
             xy=(2, 1),
             xytext=(0.5, 0.5),
             weight='bold',
             color='red',
             xycoords="data",
             arrowprops=
             dict(arrowstyle="->", connectionstyle='arc3', color='b'),
             bbox=
             dict(boxstyle="rarrow",
                  pad=0.6,
                  fc="yellow",
                  ec='k',
                  lw=1,
                  alpha=0.5)
             )

这里的黄色箭头和蓝色细长线即为参数方法添加的参数,实际使用过程中根据自己的实际所需使用,可以认为添加对图像的一些解释

2.9 bbox:给标题增加外框

(boxstyle:方框外形;circle:椭圆;darrow:双向箭头;larrow:箭头向左;rarrow:箭

头向右;round:圆角矩形;round4:椭长方形;roundtooth:波浪形边框 1;sawtooth:

波浪形边框 2;square:长方形)

2.10 . text():添加图形内容细节的无指向型注释文本(水印)

函数方法:plt.text()

x,y:表示坐标轴上的值

weight:

  • ultralightlight
  • normal
  • regular
  • book
  • medium
  • roman
  • semibold
  • demibold
  • demi
  • bold
  • heavy
  • extrabold
  • black

xycoodrds:

  • figure points:图左下角的点
  • figure pixels:图左下角的像素
  • figure fraction:图的左下部分
  • axes points:坐标轴左下的点
  • axes pixels:坐标轴左下的像素

data:使用被注释对象的坐标系统

arrowprops:箭头参数,参数类型为字典 dict

width:箭头的宽度

headwidth:箭头底部以点为单位的宽度

headlength:箭头的长度

shrink:总长度的一部分,从两端“收缩”

facecolor:箭头颜色

bbox:给标题增加外框

boxstyle:方框外形

circle:椭圆

darrow:双向箭头

larrow:箭头向左

rarrow:箭头向右

round:圆角矩形

round4:椭长方形

roundtooth:波浪形边框 1

sawtooth:波浪形边框 2

square:长方形

plt.text(1, 1,
         "y=sinx",
         weight='bold',
         color ='b')

这里设置在坐标(1,1)上,即文字下面y=sinx的蓝色字段

2.11. title():添加图形内容的标题

plt.title("正弦函数")

2.12. legend():标示不同图形的文本标签图例

使用方法:plt.legeng()

图例在图中的地理位置:

  • best
  • upper right
  • upper left
  • lower left
  • lower right
  • right
  • center left
  • center right
  • lower center
  • upper center
  • center
plt.legend(loc="lower left") # 设置图例位置

2.13 table():向子图中添加表格

plt.table(cellText=None, cellColours=None, cellloc='right' ,colWidths=None,
rowLabels=None, rowColours=None, collLabels=None, colColours=None,
collloc='center', loc='bpttpm', bbox=None, edges='closed', **kwargs)

cellText:表格单元格文本。类型为二维字符串列表

cellColours:表格单元格背景色。类型为二位颜色值列表

cellloc:表格单元格文本的对齐方式。默认值为right

left

right

center

colWidths:表格单元格宽度。类型为浮点数列表

rowLabels:表格行表头文本。类型为字符串列表

rowColours:表格行表头背景色。类型为颜色列表

colLabels:表格列表头文本。类型为字符串列表

colLoc:表格行表头文本对齐方式。默认 right

left

right

center

colColours:表格列表头背景色。类型为颜色列表

loc:单元格相对于子图的位置

bbox:绘制表格的边界框,如果此参数不为 None,将会覆盖 loc 参数

edges:单元格边线,该属性会影响各类单元格背景色

BRTL

open

closed

horizontal

vertical

3. 完整代码显示

import matplotlib.pyplot as plt
import numpy as np

plt.figure(figsize=(10, 10))
x = np.linspace(0.05, 10, 1000)  # 在0.05到10的区间中,等差选取1000个,端点不属于
y = np.sin(x)
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.plot(x, y,
         color='red',
         ls='-',
         label='sinx')
plt.xlim(1, 10)
plt.ylim(-1, 1)
plt.xlabel('x轴')
plt.ylabel('y轴')
plt.grid(ls=':',
         color='blue')  # 设置网格,颜色为蓝色
plt.axhline(0.5, color='green', lw=2, label="分割线")  # 绘制平行于x轴的水平参考线,绿色,名称
plt.axvspan(xmin=2,
            xmax=5,
            facecolor='r',
            alpha=0.2)  # 绘制垂直于x轴的参考区域
plt.axhspan(ymin=(-3**0.5)/2,
            ymax=(3**0.5)/2,
            facecolor='w',
            alpha=0.2)

plt.legend(loc="lower left")  # 设置图例位置
plt.annotate('local',
             xy=(2, 1),
             xytext=(0.5, 0.5),
             weight='bold',
             color='red',
             xycoords="data",
             arrowprops=
             dict(arrowstyle="->", connectionstyle='arc3', color='b'),
             bbox=
             dict(boxstyle="rarrow",
                  pad=0.6,
                  fc="yellow",
                  ec='k',
                  lw=1,
                  alpha=0.5)
             )
plt.xticks(list(range(0, 12, 1)))  # 调整刻度范围和刻度标签
plt.text(1, 1,
         "y=sinx",
         weight='bold',
         color ='b')
plt.title("正弦函数")
plt.show()

这串代码用于显示中文字符

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

无论画什么图,最后都得使用plt.show()用于展示图片,否则输出为空

4.折线图的线条风格

-:实线样式
   --:短横线样式
   -.:点划线样式
   ::虚线样式
    .:点标记
    O:圆标记
    V:倒三角标记
    ^:正三角标记
    <:左三角标记
    >:右三角表示
    1:下箭头标记13
    2:上箭头标记
    3:左箭头标记
    4:右箭头标记
    S:正方形标记
    p:五边形标记
    *:星形标记
    H:六边形标记
    +:加号标记
    X:x 标记
    D:菱形标记
    |:竖直线标记
    _:水平线标记

5. 常用颜色缩写

b 蓝色
g 绿色
r 红色
c 青色
m 品红色·
y 黄色
k 黑色
w 白色

6.总结

很多参数有时候用不上,但要知道有,存在即合理,不同参数的作用功能不同,不要任何图都加太多参数,一般有图例、标题,xy轴的范围即可。

无论使用哪个,建议先试试,实践是检验真理的唯一标准!!!

到此这篇关于Python数据可视化之matplotlib.pyplot绘图的基本参数的文章就介绍到这了,更多相关Python matplotlib.pyplot绘图参数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python matplotlib.pyplot.plot()参数用法

    如下所示: matplotlib.pyplot.plot(*args, **kwargs) 绘制线条或标记的轴.参数是一个可变长度参数,允许多个X.Y对可选的格式字符串. 例如,下面的每一个都是合法的: plot(x, y) #plot x, y使用默认的线条样式和颜色 plot(x, y, 'bo') #plot x,y用蓝色圆圈标记 plot(y) #plot y用x作为自变量 plot(y, 'r+') #同上,但是是用红色作为标记 如果x或y是2维的,那么相应的列将被绘制. x.y的任意

  • matplotlib.pyplot.plot()参数使用详解

    在交互环境中查看帮助文档: import matplotlib.pyplot as plt help(plt.plot) 以下是对帮助文档重要部分的翻译: plot函数的一般的调用形式: #单条线: plot([x], y, [fmt], data=None, **kwargs) #多条线一起画 plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs) 可选参数[fmt] 是一个字符串来定义图的基本属性如:颜色(color),点型(marker),

  • Python数据可视化之matplotlib.pyplot绘图的基本参数详解

    目录 1.matplotlib简介 2.图形组成元素的函数用法 2.1. figure():背景颜色 2.2 xlim()和 ylim():设置 x,y 轴的数值显示范围 2.3 xlabel()和 ylabel():设置 x,y 轴的标签文本 2.4 grid():绘制刻度线的网格线 2.5 axhline():绘制平行于 x 轴额度水平参考线 2.6 axvspan():绘制垂直于 x 轴的参考区域 2.7 xticks(),yticks() 2.8 annotate():添加图形内容细节的

  • python数据可视化之matplotlib.pyplot基础以及折线图

    不论是数据挖掘还是数据建模,都免不了数据可视化的问题.对于Python来说,Matplotlib是最著名的绘图库,它主要用于二维绘图,当然它也可以进行简单的三维绘图(基于spyder). - 模块引用 import matplotlib.pyplot as plt #引用画图库中的pyplot模块 -折线条图 语法 import matplotlib.pyplot as plt data=[1,2,3,4,5,4,2,4,6,7] #随便创建了一个数据 plt.plot(data) #引用画图库

  • 基于Python数据可视化利器Matplotlib,绘图入门篇,Pyplot详解

    Pyplot matplotlib.pyplot是一个命令型函数集合,它可以让我们像使用MATLAB一样使用matplotlib.pyplot中的每一个函数都会对画布图像作出相应的改变,如创建画布.在画布中创建一个绘图区.在绘图区上画几条线.给图像添加文字说明等.下面我们就通过实例代码来领略一下他的魅力. import matplotlib.pyplot as plt plt.plot([1,2,3,4]) plt.ylabel('some numbers') plt.show() 上图是我们通

  • Python 数据可视化之Matplotlib详解

    目录 使用的数据库 tips 数据库 Matplotlib 散点图 折线图 条形图 直方图 总结 在深入研究这些库之前,首先,我们需要一个数据库来绘制数据.我们将在本完整教程中使用 tips database.让我们讨论一下这个数据库的简介. 使用的数据库 tips 数据库 tips 数据库是20世纪90年代初期顾客在餐厅的两个半月的小费记录.它包含 6 列,例如 total_bill.tip.sex.smoker.day.time.size. 您可以从这里下载 tips 数据库. 例子: im

  • 如何在Python中利用matplotlib.pyplot画出函数图详解

    目录 0.引言 1.绘图 (1)导入所需库 (2)设置函数 (3)plt.figure() (4)plt.plot(),plt.axhline(),plt.axvline(),plt.axhspan(),plt.axvspan() (5)设置 x,y 轴的数值范围 (6)设置 x,y 轴的标题文本 (7)设置图例和标题 (8)plt.show() 2运行结果 总结 0.引言 为了让用户能够使用python时,方便地绘制 2D 图表,PYTHON的模块中提供Matplotlib模块中所含的子库py

  • python通过getopt模块如何获取执行的命令参数详解

    前言 python脚本和shell脚本一样可以获取命令行的参数,根据不同的参数,执行不同的逻辑处理. 通常我们可以通过getopt模块获得不同的执行命令和参数.下面话不多说了,来一起看看详细的介绍吧. 方法如下: 下面我通过新建一个test.py的脚本解释下这个模块的的使用 #!/usr/bin/python # -*- coding: utf-8 -*- import sys import getopt if __name__=='__main__': print sys.argv opts,

  • Python数据可视化JupyterNotebook绘图生成高清图片

    大家好,我是小五???? 最近有小伙伴问了个问题:如何在jupyter notebook,用Matplotlib画图时能够更"高清"? 今天正好跟大家聊聊,解决办法. 先举个小例子,用 Matplotlib 绘制极坐标图: import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline s = pd.Series(np.arange(20)) fig = plt.figu

  • Python数据可视化绘图实例详解

    目录 利用可视化探索图表 1.数据可视化与探索图 2.常见的图表实例 数据探索实战分享 1.2013年美国社区调查 2.波士顿房屋数据集 利用可视化探索图表 1.数据可视化与探索图 数据可视化是指用图形或表格的方式来呈现数据.图表能够清楚地呈现数据性质, 以及数据间或属性间的关系,可以轻易地让人看图释义.用户通过探索图(Exploratory Graph)可以了解数据的特性.寻找数据的趋势.降低数据的理解门槛. 2.常见的图表实例 本章主要采用 Pandas 的方式来画图,而不是使用 Matpl

  • Python利用matplotlib.pyplot绘图时如何设置坐标轴刻度

    前言 matplotlib.pyplot是一些命令行风格函数的集合,使matplotlib以类似于MATLAB的方式工作.每个pyplot函数对一幅图片(figure)做一些改动:比如创建新图片,在图片创建一个新的作图区域(plotting area),在一个作图区域内画直线,给图添加标签(label)等.matplotlib.pyplot是有状态的,亦即它会保存当前图片和作图区域的状态,新的作图函数会作用在当前图片的状态基础之上. 在开始本文之前,不熟悉的朋友可以先看看这篇文章:Python

  • Python数据可视化之用Matplotlib绘制常用图形

    一.散点图 散点图用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式. 特点:判断变量之间是否存在数量关联趋势,表示离群点的分布规律. 散点图绘制: plt.scatter(x,y) # 以默认的形状颜色绘制散点图 实例: 假设我们获取到了上海2020年5,10月份每天白天的最高气温(分别位于列表a.b),那么此时如何观察气温和随时间变化的某种规律. # 绘制图形所需的数据 y_5 = [11,17,16,11,12,11,12,13,10,14,8

随机推荐