python numpy矩阵信息说明,shape,size,dtype
我就废话不多说了,大家还是直接看例子吧!
import numpy as np from numpy import random matrix1 = random.random(size=(2,4)) #矩阵每维的大小 print matrix1.shape
#矩阵所有数据的个数
print matrix1.size
#矩阵每个数据的类型
print matrix1.dtype
补充知识:Python:查看矩阵大小,查看列表大小
对于Python3.5
查看矩阵大小
>>>import numpy as np >>>from numpy import random >>>matrix = random.random(size=(2,4)) >>>matrix.shape #矩阵每维的大小 (2,4) >>>print matrix.size #矩阵所有数据的个数 8 >>>print matrix1.dtype #矩阵每个数据的类型 dtype('float64')
查看列表大小
>>>a=[1,2,3,4] >>>len(a) 4
以上这篇python numpy矩阵信息说明,shape,size,dtype就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
关于Numpy数据类型对象(dtype)使用详解
常用方法 #记住引入numpy时要是用别名np,则所有的numpy字样都要替换 #查询数值类型 >>>type(float) dtype('float64') # 查询字符代码 >>> dtype('f') dtype('float32') >>> dtype('d') dtype('float64') # 查询双字符代码 >>> dtype('f8') dtype('float64') # 获取所有字符代码 >>>
-
Numpy数据类型转换astype,dtype的方法
1.查看数据类型 In [11]: arr = np.array([1,2,3,4,5]) In [12]: arr Out[12]: array([1, 2, 3, 4, 5]) // 该命令查看数据类型 In [13]: arr.dtype Out[13]: dtype('int64') In [14]: float_arr = arr.astype(np.float64) // 该命令查看数据类型 In [15]: float_arr.dtype Out[15]: dtype('float
-
基于Python对数据shape的常见操作详解
这一阵在用python做DRL建模的时候,尤其是在配合使用tensorflow的时候,加上tensorflow是先搭框架再跑数据,所以调试起来很不方便,经常遇到输入数据或者中间数据shape的类型不统一,导致一些op老是报错.而且由于水平菜,所以一些常用的数据shape转换操作也经常百度了还是忘,所以想再整理一下. 一.数据的基本属性 求一组数据的长度 a = [1,2,3,4,5,6,7,8,9,10,11,12] print(len(a)) print(np.size(a)) 求一组数据的s
-
python numpy矩阵信息说明,shape,size,dtype
我就废话不多说了,大家还是直接看例子吧! import numpy as np from numpy import random matrix1 = random.random(size=(2,4)) #矩阵每维的大小 print matrix1.shape #矩阵所有数据的个数 print matrix1.size #矩阵每个数据的类型 print matrix1.dtype 补充知识:Python:查看矩阵大小,查看列表大小 对于Python3.5 查看矩阵大小 >>>import
-
Python NumPy矩阵对象详解及方法
目录 1. 介绍 2. 创建矩阵 3. 矩阵特有属性 4. 矩阵乘法 1. 介绍 在数学上,矩阵(Matrix)是一个按照矩形阵列排列的负数或实数集合,但在NumPy中,矩阵np.matrix是数组np.ndarray的派生类.这意味着矩阵本质上是 一个数组,拥有数组的所有属性和方法:同时,矩阵又有一些不同于数组的特性和方法首先,矩阵是二维的,不能像数组一样幻化成任意维度,即使展开或切片,返回也是二维的:其次,矩阵和矩阵.矩阵和数组都可以做加减乘除运算,运算结果都是返回矩阵:最后,矩阵的乘法
-
Numpy中ndim、shape、dtype、astype的用法详解
本文介绍numpy数组中这四个方法的区别ndim.shape.dtype.astype. 1.ndim ndim返回的是数组的维度,返回的只有一个数,该数即表示数组的维度. 2.shape shape:表示各位维度大小的元组.返回的是一个元组. 对于一维数组:有疑问的是为什么不是(1,6),因为arr1.ndim维度为1,元组内只返回一个数. 对于二维数组:前面的是行,后面的是列,他的ndim为2,所以返回两个数. 对于三维数组:很难看出,下面打印arr3,看下它是什么结构. 先看最外面的中括号
-
python numpy 矩阵堆叠实例
在实际操作中,遇到了矩阵堆叠的操作,本来想着自己写一个函数,后来想,应该有库函数,于是一阵找寻 import numpy as np a = np.array([1,2,3]) b = np.array([4,5,6]) np.stack((a,b)) #默认行堆叠 输出: array([[1, 2, 3], [4, 5, 6]]) np.vstack((a, b)) 输出: array([[1, 2, 3], [4, 5, 6]]) np.hstack((a, b)) 输出: array([1
-
Python numpy矩阵处理运算工具用法汇总
numpy是用于处理矩阵运算非常好的工具.执行效率高,因为其底层是用的是C语句 使用numpy,需要将数据转换成numpy能识别的矩阵格式. 基本用法: numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0) 名称描述 object数组或嵌套的数列 dtype数组元素的数据类型,可选,例如:int64,int16,int32,float64等,位数越高,精度越高,但也更耗内存.
-
基于Python Numpy的数组array和矩阵matrix详解
NumPy的主要对象是同种元素的多维数组.这是一个所有的元素都是一种类型.通过一个正整数元组索引的元素表格(通常是元素是数字). 在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用python求线代中的秩中,我们用numpy包中的linalg.matrix_rank方法计算矩阵的秩,例子如下). 结果是: 线性代数中秩的定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那末D称为矩阵
-
Python numpy中矩阵的基本用法汇总
Python矩阵的基本用法 mat()函数将目标数据的类型转化成矩阵(matrix) 1,mat()函数和array()函数的区别 Numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素,虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中Numpy函数库中的matrix与MATLAB中matrices等价. 直接看一个例子: import numpy as np a = np.mat('1 3;5 7')
-
Python Numpy实现计算矩阵的均值和标准差详解
目录 一.前言 二.详解计算均值和标准差 三.实践:CRITIC权重法计算变异系数 一.前言 CRITIC权重法是一种比熵权法和标准离差法更好的客观赋权法: 它是基于评价指标的对比强度和指标之间的冲突性来综合衡量指标的客观权重.考虑指标变异性大小的同时兼顾指标之间的相关性,并非数字越大就说明越重要,完全利用数据自身的客观属性进行科学评价. 对比强度是指同一个指标各个评价方案之间取值差距的大小,以标准差的形式来表现.标准差越大,说明波动越大,即各方案之间的取值差距越大,权重会越高: 指标之间的冲突
-
python中numpy矩阵的零填充的示例代码
目录 需求: 一.再new一个更大的所需要的矩阵大小 二.pad函数 其他想法 需求: 对于图像处理中的一些过程,我需要对读取的numpy矩阵进行size的扩充,比如原本是(4,6)的矩阵,现在需要上下左右各扩充3行,且为了不影响数值计算,都用0填充. 比如下图,我有一个4x5大小的全1矩阵,但是现在我要在四周都加上3行的0来扩充大小,最后扩充完还要对原区域进行操作. 方法: 想到了几种方法,记录一下. 一.再new一个更大的所需要的矩阵大小 a = np.ones((4,5)) #假设原矩阵是
-
Python numpy生成矩阵、串联矩阵代码分享
import numpy 生成numpy矩阵的几个相关函数: numpy.array() numpy.zeros() numpy.ones() numpy.eye() 串联生成numpy矩阵的几个相关函数: numpy.array() numpy.row_stack() numpy.column_stack() numpy.reshape() >>> import numpy >>> numpy.eye(3) array([[ 1., 0., 0.], [ 0., 1.
随机推荐
- WPF自定义选择年月控件详解
- Docker端口映射实现网络访问的方法
- 理解Javascript的call、apply
- 热血江湖按键脚本-自动拿东西
- javascript RegExp 使用说明
- 解析Swift中的泛型支持与使用
- 分享9个最好用的JavaScript开发工具和代码编辑器
- PHP新手上路(十三)
- php字符串过滤与替换小结
- PHP mcrypt可逆加密算法分析
- Android开发实现的电话窃听和拦截应用
- vue子组件使用自定义事件向父组件传递数据
- Windows平台的 PHP 报错 Fatal error: Class COM not found in 的解决方法
- PHP中抽象类、接口的区别与选择分析
- jQuery Pagination Ajax分页插件(分页切换时无刷新与延迟)中文翻译版
- MFC设置对话框焦点的方法简述
- 数据库更新Sqlserver脚本总结
- jQuery响应enter键的实现思路
- jQuery validata插件实现方法
- NT的19个秘密武器