一文详解Python中生成器的原理与使用

目录
  • 什么是生成器
  • 迭代器和生成器的区别
  • 创建方式
  • 生成器表达式
    • 基本语法
  • 生成器函数
  • yield关键字
    • yield和return
    • yield的使用方法
  • 生成器函数的基本使用
    • send的使用
  • 可迭代对象的优化
  • 总结

我们学习完推导式之后发现,推导式就是在容器中使用一个for循环而已,为什么没有元组推导式?

原因就是“元组推导式”的名字不是这样的,而是叫做生成器表达式。

什么是生成器

生成器表达式本质上就是一个迭代器,是定义迭代器的一种方式,是允许自定义逻辑的迭代器。生成器使用generator表示。

迭代器和生成器的区别

迭代器本身是系统内置的, 无法重写内置的逻辑结构;而生成器是用户自定义的,可以重写逻辑结构。所以生成器就是一个迭代器,只是我们将自己写的迭代器叫做生成器作为区分而已。

创建方式

生成器有两种创建方式

1.生成器表达式,就是“元组推导式”

3.生成器函数,就是使用def定义,里面使用yield关键字

生成器表达式

基本语法

from collections import Iterator, Iterable

# 生成器表达式(元组推导式)
gen = (i * 2 for i in range(1, 11))
print(isinstance(gen, Iterable))  # 判断是否是迭代对象
print(isinstance(gen, Iterator))  # 判断是否是迭代器

# 这个 gen 就是生成器

生成器函数

我们上面说到,生成器函数如何定义?其实和普通的函数定义的方法是一样的,都是要使用def关键字来定义,其它的写法没有任何要求,普通函数怎么写生成器函数就怎么写,唯一的要求就是要使用yield关键字。

要注意,生成器函数就是一个函数,是使用了yield的函数,只不过生成器函数是用来定义生成器的。

yield关键字

yield这个关键字其实类似于return关键字,return关键字的作用是在函数中使用,用来返回数据,yield关键字的作用也是一样的,就是用来返回数据,但是和return还有其它的不同之处。

yield和return

共同点

执行到对应语句的时候,就会返回对应的值。

不同点

return执行的时候,函数就跳出,然后return之后的所有作用域语句就会全部跳出,当函数再次调用的时候,整个函数就重新执行。

yield执行的时候,返回数据,但是函数就会记住跳出的位置,当你再次调用函数(生成器)的时候,就从上一次跳出的地方继续执行,是不是和迭代器的取值有异曲同工之处?

yield的使用方法

yield的使用方法有两种,一种是和return的使用方法一样,在关键字的后面直接添加返回值,这是推荐使用的方法;

第二种方法使用将yield作为一个函数使用,就是在yield后面使用括号,在括号中填写返回的值。

生成器函数的基本使用

# 1、定义一个生成器函数
# 生成器函数就是一个使用yield的函数
def myGen():
	print(1)
	yield 11
	print(2)
	yield 22
	print(3)
	yield 33

# 2、初始化生成器
# 执行生成器函数,返回一个对象,就是生成器对象,简称生成器
from collections import Iterator
gen = myGen()
res = isinstance(gen, Iterator)
print(res)  # True  返回True说明生成器本质上就是一个迭代器

# 3、调用生成器
# 生成器本质上就是一个迭代器,还记得迭代器如何调用吗?
res = next(gen)
print(res)
"""
结果:
1   (生成器函数中的语句 print(1))
11  (yield返回的值,print(res))
"""

send的使用

sendnext一样,都是用来取出迭代器中的值的函数,send是生成器的内置函数。而且send和next相比,功能更加的强大,next只能取值;send不但能取值,而且还能发送值。

实例

定义生成器函数

def myGen():

   print('process start')
   #  res获取yield的值
   res = yield 100

   print(res, '内部打印1')
   print('process start')
   res = yield 200

   print(res, '内部打印2')
   print('process start')
   res = yield 300

   print(res, '内部打印3')

初始化生成器

gen = myGen()

第一次调用生成器

# 在使用send时,第一次传递的数据必须是None,这是硬性语法,以为send第一次传递参数的时候,还没有遇到yield,所以不能传送。
res = gen.send(None)

print(res)
"""
结果:
process start
100
"""

使用send第一次调用生成器的时候执行了下面的语句:

print('process start')
res = yield 100

执行到yield 100的时候,才碰到了yield,但是send之前没有遇到过yield,所以不能传入任何值,None没有任何意义,这是硬性语法。

这里注意,res = yield 100中的res此时没有任何价值。因为这个一条语句我们目前只执行了一半,执行了yield 100,还有res的赋值没有完成,所以现在的res没有任何的意义。

第一次调用生成器,返回100,这个100则是语句res = yield 100返回的值。

第二次调用

res = next(gen)
print(res)
"""
结果:
None 内部打印1
process start
200
"""

第二次调用执行了以下语句:

res = yield 100
print(res, '内部打印1')
print('process start')
res = yield 200

注意,生成器函数在调用的时候,会从上一次yield返回值的地方,就是res = yield 100,但是这个语句第二次调用的时候,只会执行一半,因为另一半在第一次调用的时候已经执行完了,就是yield 100,就是说还有res的赋值没有进行,但是第二次调用使用的是next,next没有传送值的能力,所以res就没有赋予任何值,,在打印的时候,res就是一个None。

第三次调用

res = gen.send('第三次调用')
print(res)
"""
结果:
第三次调用 内部打印2
process start
300
"""

第三次调用执行的语句是:

res = yield 200
print(res, '内部打印2')
print('process start')
res = yield 300

这次和第二次的调用基本是一样的,但是这次是使用send调用,所以传送了值过去,执行于是将值赋予了res。

第四次调用

res = gen.send(None)
print(res)

"""
结果:
None 内部打印3
StopIteration  (报错)
"""

第四次调用,执行以下语句:

res = yield 300
print(res, '内部打印3')

第四次调用生成器,没有可以执行的yield语句,所以返回不了任何数据,因此报出了 StopIteration的错误。

可迭代对象的优化

现在我们就已经学习完了容器和迭代器、生成器的相关知识,我们也知道了可迭代对象和迭代器的区别,那么现在我们要说的是,如果我们需要制定一个容器供我们遍历使用,那么我们优先使用迭代器而不是容器这样的一个普通的可迭代对象。

在我们之后的日常使用过程当中,我们有时就会发现,我们需要在一个循环中遍历一个容器供我们使用,但是这个容器中的值非常多,使这个容器占据的内存空间非常大,消耗了大量的资源,导致我们的程序非常慢。这个时候我们就需要使用迭代器或者生成器去遍历,迭代器每次遍历只占据当次遍历时的内存空间,因此非常的节省资源,所以这就是我们优先使用迭代器的理由。

总结

现在我们就学习完了python中的所有的函数类型,知道了python中的有内置函数、自定义函数,之后我们还会学习一些python的常用标准库和第三方库,里面也有一些我们经常用到的函数。

  • 普通函数,使用def定义
  • 匿名函数,使用lambda定义
  • 闭包函数,内函数调用外函数的变量,并且外函数将内函数返回,这样的嵌套下,外函数就是一个闭包函数,但是一般的情况下,我们并不特意的作出一个闭包函数,而是要使用闭包这么一个功能
  • 高阶函数,就是将函数作为参数使用的函数,常用的内置高阶函数有map、filter、reduce、sorted
  • 递归函数,自己调用自己的函数

以上就是一文详解Python中生成器的原理与使用的详细内容,更多关于Python生成器的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python中的生成器

    目录 1.列表生成式 1.列表生成式 代码演示: # 列表生成式 list_1 = [x**2 for x in range(10)] # x**2处也可以放函数 print(list_1) #[0, 1, 4, 9, 16, 25, 36, 49, 64, 81] # 代码等价于 list_2 = [] for x in range(10): list_2.append(x**2) print(list_2) 2.生成器 通过列表生成式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯

  • 详解Python中迭代器和生成器的原理与使用

    目录 1.可迭代对象.迭代器 1.1概念简介 1.2可迭代对象 1.3迭代器 1.4区分可迭代对象和迭代器 1.5可迭代对象和迭代器的关系 1.6可迭代对象和迭代器的工作机制 1.7自己动手创建可迭代对象和迭代器 1.8迭代器的优势 1.9迭代器的缺点和误区 1.10python自带的迭代器工具itertools 2.生成器 2.1生成器的创建方法 2.2生成器方法 2.3生成器的优势 2.4生成器应用场景 3.生成器节省内存.迭代器不节省内存 3.1可迭代对象 3.2迭代器 3.3生成器 3.

  • 一文搞懂python 中的迭代器和生成器

    可迭代对象和迭代器 迭代(iterate)意味着重复,就像 for 循环迭代序列和字典那样,但实际上也可使用 for 循环迭代其他对象:实现了方法 __iter__ 的对象(迭代器协议的基础).__iter__方法返回一个迭代器,它是包含方法 __next__ 的对象,调用时可不提供任何参数:当你调用 __next__ 时,迭代器应返回其下一个值:如果没有可供返回的值,应引发 StopIteration 异常:也可使用内置函数 next(),此种情况下,next(it) 与 it.__next(

  • 一文搞懂​​​​​​​python可迭代对象,迭代器,生成器,协程

    目录 设计模式:迭代 python:可迭代对象和迭代器 为什么要有生成器? python的生成器实现 协程 设计模式:迭代 迭代是一种设计模式,解决有序便利序列的问题.通用的可迭代对象需要支持done和next方法. 伪代码如下: while not iterator.done(): item = iterator.next() ..... python:可迭代对象和迭代器 python的可迭代对象需要实现__iter__()方法,返回一个迭代器.for循环和顶级函数iter(obj)调用obj

  • python教程之生成器和匿名函数

    目录 生成器 01 什么是生成器? 02 通俗的讲解 03 生成器到底有什么用? 04 生成器的常见用途? 匿名函数 01 什么是匿名函数? 02 通俗的讲解 总结 生成器 01 什么是生成器? 记住两个关键: **生成器是一种特殊的函数方法.**意味着它和函数(def)密不可分. 基于上一点,只要函数中出现yield关键字,就是生成器函数. 初学的你,还是太难理解? 02 通俗的讲解 你可以将生成器理解为一个盒子,你可以向这个盒子里随意添加元素,当你需要的时候,再取出来用. 请看下面的例子:

  • python三大器之迭代器、生成器、装饰器

    目录 迭代器 生成器 装饰器(非常实用!) 迭代器 聊迭代器前我们要先清楚迭代的概念:通常来讲从一个对象中依次取出数据,这个过程叫做遍历,这个手段称为迭代(重复执行某一段代码块,并将每一次迭代得到的结果作为下一次迭代的初始值).可迭代对象(iterable):是指该对象可以被用于for…in…循环,例如:集合,列表,元祖,字典,字符串,迭代器等. 在python中如果一个对象实现了 __iter__方法,我们就称之为可迭代对象,可以查看set\list\tuple…等源码内部均实现了__iter

  • 一文详解Python中生成器的原理与使用

    目录 什么是生成器 迭代器和生成器的区别 创建方式 生成器表达式 基本语法 生成器函数 yield关键字 yield和return yield的使用方法 生成器函数的基本使用 send的使用 可迭代对象的优化 总结 我们学习完推导式之后发现,推导式就是在容器中使用一个for循环而已,为什么没有元组推导式? 原因就是“元组推导式”的名字不是这样的,而是叫做生成器表达式. 什么是生成器 生成器表达式本质上就是一个迭代器,是定义迭代器的一种方式,是允许自定义逻辑的迭代器.生成器使用generator表

  • 一文详解Python中PO模式的设计与实现

    目录 什么是PO模式 PO 三层模式 PO 设计模式的优点 将改写的脚本转为PO设计模式 构建基础的 BasePage 层 构建首页的 Page 层(HomePage) 构建登录页的 Page 层(LoginPage) 构建 首页 - 订单 - 支付 流程的 Page 层(OrderPage) PO 设计模式下测试Case的改造 在使用 Python 进行编码的时候,会使用自身自带的编码设计格式,比如说最常见的单例模式,稍微抽象一些的抽象工厂模式等等… 在利用 Python 做自动化测试的时候,

  • 一文详解Python中的重试机制

    目录 介绍 1. 最基本的重试 2. 设置停止基本条件 3. 设置何时进行重试 4. 重试后错误重新抛出 5. 设置回调函数 介绍 为了避免由于一些网络或等其他不可控因素,而引起的功能性问题.比如在发送请求时,会因为网络不稳定,往往会有请求超时的问题. 这种情况下,我们通常会在代码中加入重试的代码.重试的代码本身不难实现,但如何写得优雅.易用,是我们要考虑的问题. 这里要给大家介绍的是一个第三方库 - Tenacity (标题中的重试机制并并不准确,它不是 Python 的内置模块,因此并不能称

  • 一文详解Python中复合语句的用法

    目录 Python复合语句 1.if 语句 2.while 语句 3.for 语句 4.try 语句 5.with 语句 6.match 语句 Python复合语句 复合语句是包含其它语句(语句组)的语句:它们会以某种方式影响或控制所包含其它语句的执行.通常,复合语句会跨越多行,虽然在某些简单形式下整个复合语句也可能包含于一行之内. if.while和for语句用来实现传统的控制流程构造.try语句为一组语句指定异常处理和/和清理代码,而with语句允许在一个代码块周围执行初始化和终结化代码.函

  • 一文详解Python中的Map,Filter和Reduce函数

    目录 1. 引言 2. 高阶函数 3. Lambda表达式 4. Map函数 5. Filter函数 6. Reduce函数 7. 总结 1. 引言 本文重点介绍Python中的三个特殊函数Map,Filter和Reduce,以及如何使用它们进行代码编程.在开始介绍之前,我们先来理解两个简单的概念高阶函数和Lambda函数. 2. 高阶函数 把函数作为参数传入,这样的函数称为高阶函数,函数式编程就是指这种高度抽象的编程范式. 举例如下: def higher(your_function, som

  • 一文详解Python中实现单例模式的几种常见方式

    目录 Python 中实现单例模式的几种常见方式 元类(Metaclass): 装饰器(Decorator): 模块(Module): new 方法: Python 中实现单例模式的几种常见方式 元类(Metaclass): class SingletonType(type): """ 单例元类.用于将普通类转换为单例类. """ _instances = {} # 存储单例实例的字典 def __call__(cls, *args, **kwa

  • 一文详解Python中logging模块的用法

    目录 一.低配logging 1.v1 2.v2 3.v3 二.高配logging 1.配置日志文件 2.使用日志 三.Django日志配置文件 一.低配logging 日志总共分为以下五个级别,这个五个级别自下而上进行匹配 debug-->info-->warning-->error-->critical,默认最低级别为warning级别. 1.v1 import logging logging.debug('调试信息') logging.info('正常信息') logging

  • 详解Python中递归函数的原理与使用

    目录 什么是递归函数 递归函数的条件 定义一个简单的递归函数 代码解析 内存栈区堆区 死递归 尾递归 实例 什么是递归函数 如果一个函数,可以自己调用自己,那么这个函数就是一个递归函数. 递归,递就是去,归就是回,递归就是一去一回的过程. 递归函数的条件 一般来说,递归需要边界条件,整个递归的结构中要有递归前进段和递归返回段.当边界条件不满足,递归前进,反之递归返回.就是说递归函数一定需要有边界条件来控制递归函数的前进和返回. 定义一个简单的递归函数 # 定义一个函数 def recursion

  • 详解python中asyncio模块

    一直对asyncio这个库比较感兴趣,毕竟这是官网也非常推荐的一个实现高并发的一个模块,python也是在python 3.4中引入了协程的概念.也通过这次整理更加深刻理解这个模块的使用 asyncio 是干什么的? 异步网络操作并发协程 python3.0时代,标准库里的异步网络模块:select(非常底层) python3.0时代,第三方异步网络库:Tornado python3.4时代,asyncio:支持TCP,子进程 现在的asyncio,有了很多的模块已经在支持:aiohttp,ai

随机推荐