Python通过朴素贝叶斯和LSTM分别实现新闻文本分类

目录
  • 一、项目背景
  • 二、数据处理与分析
  • 三、基于机器学习的文本分类–朴素贝叶斯
    • 1. 模型介绍
    • 2. 代码结构
    • 3. 结果分析
  • 四、基于深度学习的文本分类–LSTM
    • 1. 模型介绍
    • 2. 代码结构
    • 3. 结果分析
  • 五、小结

一、项目背景

本项目来源于天池⼤赛,利⽤机器学习和深度学习等知识,对新闻⽂本进⾏分类。⼀共有14个分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏、娱乐。

最终将测试集的预测结果上传⾄⼤赛官⽹,可查看排名。评价标准为类别f1_score的均值,提交结果与实际测试集的类别进⾏对⽐。(不要求结果领先,但求真才实学)

二、数据处理与分析

本次大赛提供的材料是由csv格式编写,只需调用python中的pandas库读取即可。为了更直观的观察数据,我计算了文档的平均长度,以及每个标签分别对应的文档。(sen字典与tag字典的获取方法会在后文中展示,此步只用来呈现数据分布,运行时可先跳过)

import matplotlib.pyplot as plt
from tqdm import tqdm
import time
from numpy import *
import pandas as pd

print('count: 200000') #词典sen中,每个标签对应其所有句子的二维列表
print('average: '+str(sum([[sum(sen[i][j]) for j in range(len(sen[i]))] for i in sen])/200000))
x = []
y = []
for key,value in tag.items(): #词典tag中,每个标签对应该标签下的句子数目
    x.append(key)
    y.append(value)
plt.bar(x,y)
plt.show()

最终我们得到了以下结果:

平均文档长约907词,每个标签对应的文档数从标签0至13逐个减少。

三、基于机器学习的文本分类–朴素贝叶斯

1. 模型介绍

朴素贝叶斯分类器的基本思想是利用特征项和类别的联合概率来估计给定文档的类别概率。假设文本是基于词的一元模型,即文本中当前词的出现依赖于文本类别,但不依赖于其他词及文本的长度,也就是说,词与词之间是独立的。根据贝叶斯公式,文档Doc属于Ci类的概率为

文档Doc采用TF向量表示法,即文档向量V的分量为相应特征在该文档中出现的频度,文档Doc属于Ci类文档的概率为

其中,TF(ti,Doc)是文档Doc中特征ti出现的频度,为了防止出现不在词典中的词导致概率为0的情况,我们取P(ti|Ci)是对Ci类文档中特征ti出现的条件概率的拉普拉斯概率估计:

这里,TF(ti,Ci)是Ci类文档中特征ti出现的频度,|V|为特征集的大小,即文档表示中所包含的不同特征的总数目。

2. 代码结构

我直接通过python自带的open()函数读取文件,并建立对应词典,设定停用词,这里的停用词选择了words字典中出现在100000个文档以上的所有词。训练集取前19万个文档,测试集取最后一万个文档。

train_df = open('./data/train_set.csv').readlines()[1:]
train = train_df[0:190000]
test = train_df[190000:200000]
true_test = open('./data/test_a.csv').readlines()[1:]
tag = {str(i):0 for i in range(0,14)}
sen = {str(i):{} for i in range(0,14)}
words={}
stop_words = {'4149': 1, '1519': 1, '2465': 1, '7539': 1, ...... }

接着,我们需要建立标签词典和句子词典,用tqdm函数来显示进度。

for line in tqdm(train_df):
    cur_line = line.split('\t')
    cur_tag = cur_line[0]
    tag[cur_tag] += 1
    cur_line = cur_line[1][:-1].split(' ')
    for i in cur_line:
        if i not in words:
            words[i] = 1
        else:
            words[i] += 1
        if i not in sen[cur_tag]:
            sen[cur_tag][i] = 1
        else:
            sen[cur_tag][i] += 1

为了便于计算,我定义了如下函数,其中mul()用来计算列表中所有数的乘积,prob_clas() 用来计算P(Ci|Doc),用probability()来计算P(ti|Ci),在probability() 函数中,我将输出结果中分子+1,分母加上字典长度,实现拉普拉斯平滑处理。

def mul(l):
    res = 1
    for i in l:
        res *= i
    return res
def prob_clas(clas):
    return tag[clas]/(sum([tag[i] for i in tag]))
def probability(char,clas):  #P(特征|类别)
    if char not in sen[clas]:
        num_char = 0
    else:
        num_char = sen[clas][char]
    return (1+num_char)/(len(sen[clas])+len(words))

在做好所有准备工作,定义好函数后,分别对测试集中的每一句话计算十四个标签对应概率,并将概率最大的标签储存在预测列表中,用tqdm函数来显示进度。

PRED = []
for line in tqdm(true_test):
    result = {str(i):0 for i in range(0,14)}
    cur_line = line[:-1].split(' ')
    clas = cur_tag
    for i in result:
        prob = []
        for j in cur_line:
            if j in stop_words:
                continue
            prob.append(log(probability(j,i)))
        result[i] = log(prob_clas(i))+sum(prob)
    for key,value in result.items():
        if(value == max(result.values())):
            pred = int(key)
    PRED.append(pred)

最后把结果储存在csv文件中上传网站,提交后查看成绩。(用此方法编写的csv文件需要打开后删去第一列再上传)

res=pd.DataFrame()
res['label']=PRED
res.to_csv('test_TL.csv')

3. 结果分析

在训练前19万个文档,测试后一万个文档的过程中,我不断调整停用词取用列表,分别用TF和TF-IDF向量表示法进行了测试,结果发现使用TF表示法准确性较高,最后取用停用词为出现在十万个文档以上的词。最终得出最高效率为0.622。

在提交至网站后,对五万个文档进行测试的F1值仅有 0.29左右,效果较差。

四、基于深度学习的文本分类–LSTM

1. 模型介绍

除了传统的机器学习方法,我使用了深度学习中的LSTM(Long Short-Term Memory)长短期记忆网络,来尝试处理新闻文本分类,希望能有更高的准确率。LSTM它是一种时间循环神经网络,适合于处理和预测时间序列中间隔和延迟相对较长的重要事件。LSTM 已经在科技领域有了多种应用。基于 LSTM 的系统可以学习翻译语言、控制机器人、图像分析、文档摘要、语音识别图像识别、手写识别、控制聊天机器人、预测疾病、点击率和股票、合成音乐等等任务。我采用深度学习库Keras来建立LSTM模型,进行文本分类。

对于卷积神经网络CNN和循环网络RNN而言,随着时间的不断增加,隐藏层一次又一次地乘以权重W。假如某个权重w是一个接近于0或者大于1的数,随着乘法次数的增加,这个权重值会变得很小或者很大,造成反向传播时梯度计算变得很困难,造成梯度爆炸或者梯度消失的情况,模型难以训练。也就是说一般的RNN模型对于长时间距离的信息记忆很差,因此LSTM应运而生。

LSTM长短期记忆网络可以更好地解决这个问题。在LSTM的一个单元中,有四个显示为黄色框的网络层,每个层都有自己的权重,如以 σ 标记的层是 sigmoid 层,tanh是一个激发函数。这些红圈表示逐点或逐元素操作。单元状态在通过 LSTM 单元时几乎没有交互,使得大部分信息得以保留,单元状态仅通过这些控制门(gate)进行修改。第一个控制门是遗忘门,用来决定我们会从单元状态中丢弃什么信息。第二个门是更新门,用以确定什么样的新信息被存放到单元状态中。最后一个门是输出门,我们需要确定输出什么样的值。总结来说 LSTM 单元由单元状态和一堆用于更新信息的控制门组成,让信息部分传递到隐藏层状态。

2. 代码结构

首先是初始数据的设定和包的调用。考虑到平均句长约900,这里取最大读取长度为平均长度的2/3,即max_len为600,之后可通过调整该参数来调整学习效率。

from tqdm import tqdm
import pandas as pd
import time
import matplotlib.pyplot as plt
import seaborn as sns
from numpy import *
from sklearn import metrics
from sklearn.preprocessing import LabelEncoder,OneHotEncoder
from keras.models import Model
from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding
from keras.optimizers import rmsprop_v2
from keras.preprocessing import sequence
from keras.callbacks import EarlyStopping
from keras.models import load_model
import os.path

max_words = 7549 #字典最大编号
# 可通过调节max_len调整模型效果和学习速度
max_len = 600 #句子的最大长度
stop_words = {}

接下来,我们定义一个将DataFrame的格式转化为矩阵的函数。该函数输出一个长度为600的二维文档列表和其对应的标签值。

def to_seq(dataframe):
    x = []
    y = array([[0]*int(i)+[1]+[0]*(13-int(i)) for i in dataframe['label']])
    for i in tqdm(dataframe['text']):
        cur_sentense = []
        for word in i.split(' '):
            if word not in stop_words: #最终并未采用停用词列表
                cur_sentense.append(word)
        x.append(cur_sentense)
    return sequence.pad_sequences(x,maxlen=max_len),y

接下来是模型的主体函数。该函数输入测试的文档,测试集的真值,训练集和检验集,输出预测得到的混淆矩阵。具体代码介绍,见下列代码中的注释。

def test_file(text,value,train,val):
    ## 定义LSTM模型
    inputs = Input(name='inputs',shape=[max_len])
    ## Embedding(词汇表大小,batch大小,每个新闻的词长)
    layer = Embedding(max_words+1,128,input_length=max_len)(inputs)
    layer = LSTM(128)(layer)
    layer = Dense(128,activation="relu",name="FC1")(layer)
    layer = Dropout(0.5)(layer)
    layer = Dense(14,activation="softmax",name="FC2")(layer)
    model = Model(inputs=inputs,outputs=layer)
    model.summary()
    model.compile(loss="categorical_crossentropy",optimizer=rmsprop_v2.RMSprop(),metrics=["accuracy"])

    ## 模型建立好之后开始训练,如果已经保存训练文件(.h5格式),则直接调取即可
    if os.path.exists('my_model.h5') == True:
        model = load_model('my_model.h5')
    else:
        train_seq_mat,train_y = to_seq(train)
        val_seq_mat,val_y = to_seq(val)
        model.fit(train_seq_mat,train_y,batch_size=128,epochs=10,  #可通过epochs数来调整准确率和运算速度
                      validation_data=(val_seq_mat,val_y))
        model.save('my_model.h5')
    ## 开始预测
    test_pre = model.predict(text)
    ##计算混淆函数
    confm = metrics.confusion_matrix(argmax(test_pre,axis=1),argmax(value,axis=1))
    print(metrics.classification_report(argmax(test_pre,axis=1),argmax(value,axis=1)))
    return confm

训练过程如下图所示。

为了更直观的表现结果,定义如下函数绘制图像。

def plot_fig(matrix):
    Labname = [str(i) for i in range(14)]
    plt.figure(figsize=(8,8))
    sns.heatmap(matrix.T, square=True, annot=True,
                fmt='d', cbar=False,linewidths=.8,
                cmap="YlGnBu")
    plt.xlabel('True label',size = 14)
    plt.ylabel('Predicted label',size = 14)
    plt.xticks(arange(14)+0.5,Labname,size = 12)
    plt.yticks(arange(14)+0.3,Labname,size = 12)
    plt.show()
    return

最后,只需要通过pandas读取csv文件,按照比例分为训练集、检验集和测试集(这里选用比例为15:2:3),即可完成全部的预测过程。

def test_main():
    train_df = pd.read_csv("./data/train_set.csv",sep='\t',nrows=200000)
    train = train_df.iloc[0:150000,:]
    test = train_df.iloc[150000:180000,:]
    val = train_df.iloc[180000:,:]
    test_seq_mat,test_y = to_seq(test)
    Confm = test_file(test_seq_mat,test_y,train,val)
    plot_fig(Confm)

在获得预测结果最高的一组参数的选取后,我们训练整个train_set文件,训练过程如下,训练之前需删除已有的训练文件(.h5),此函数中的test行可随意选取,只是为了满足test_file()函数的变量足够。此函数只是用于训练出学习效果最好的数据并储存。

def train():
    train_df = pd.read_csv("./data/train_set.csv",sep='\t',nrows=200000)
    train = train_df.iloc[0:170000,:]
    test = train_df.iloc[0:10000,:]
    val = train_df.iloc[170000:,:]
    test_seq_mat,test_y = to_seq(test)
    Confm = test_file(test_seq_mat,test_y,train,val)
    plot_fig(Confm)

在获得最优的训练数据后,我们就可以开始预测了。我们将竞赛中提供的测试集带入模型中,加载储存好的训练集进行预测,得到预测矩阵。再将预测矩阵中每一行的最大值转化为对应的标签,储存在输出列表中即可,最后将该列表写入'test_DL.csv'文件中上传即可。(如此生成的csv文件同上一个模型一样,需手动打开删除掉第一列)

def pred_file():
    test_df = pd.read_csv('./data/test_a.csv')
    test_seq_mat = sequence.pad_sequences([i.split(' ') for i in tqdm(test_df['text'])],maxlen=max_len)

    inputs = Input(name='inputs',shape=[max_len])
    ## Embedding(词汇表大小,batch大小,每个新闻的词长)
    layer = Embedding(max_words+1,128,input_length=max_len)(inputs)
    layer = LSTM(128)(layer)
    layer = Dense(128,activation="relu",name="FC1")(layer)
    layer = Dropout(0.5)(layer)
    layer = Dense(14,activation="softmax",name="FC2")(layer)
    model = Model(inputs=inputs,outputs=layer)
    model.summary()
    model.compile(loss="categorical_crossentropy",optimizer=rmsprop_v2.RMSprop(),metrics=["accuracy"])
    model = load_model('my_model.h5')

    test_pre = model.predict(test_seq_mat)

    pred_result = [i.tolist().index(max(i.tolist())) for i in test_pre]
    res=pd.DataFrame()
    res['label']=pred_result
    res.to_csv('test_DL.csv')

整理后,我们只需要注释掉对应的指令行即可进行训练或预测。

#如果想要训练,取消下行注释,训练之前需先删除原训练文件(.h5)
#train()

#如果想要查看模型效果,取消下行注释(训练集:检验集:测试集=15:2:3)
# test_main()

#如果想预测并生成csv文件,取消下行注释
# pred_file()

3. 结果分析

最终获得的混淆矩阵如下图所示,14个标签预测的正确率均达到了80%以上,有11个标签在90%以上,有6个标签在95%以上。

绘制出来的预测结果如下图所示,可见预测效果相当理想,每个标签的正确率都尤为可观,预测错误的文本数相比于总量非常少。

最终上传网站得到结果,F1值达90%以上,效果较好。

五、小结

本实验采用了传统机器学习和基于LSTM的深度学习两种方法对新闻文本进行了分类,在两种方法的对比下,深度学习的效果明显优于传统的机器学习,并在竞赛中取得了较好的成绩(排名551)。但LSTM仍存在问题,一方面是RNN的梯度问题在LSTM及其变种里面得到了一定程度的解决,但还是不够;另一方面,LSTM计算费时,每一个LSTM的cell里面都意味着有4个全连接层(MLP),如果LSTM的时间跨度很大,并且网络又很深,这个计算量会很大,很耗时。

探寻更好的文本分类方法一直以来都是NLP在探索的方向,希望今后可以学习更多的分类方法,更多的机器学习和深度学习模型,提高分类效率。

到此这篇关于Python通过朴素贝叶斯和LSTM分别实现新闻文本分类的文章就介绍到这了,更多相关Python文本分类内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python中如何使用朴素贝叶斯算法

    这里再重复一下标题为什么是"使用"而不是"实现": 首先,专业人士提供的算法比我们自己写的算法无论是效率还是正确率上都要高. 其次,对于数学不好的人来说,为了实现算法而去研究一堆公式是很痛苦的事情. 再次,除非他人提供的算法满足不了自己的需求,否则没必要"重复造轮子". 下面言归正传,不了解贝叶斯算法的可以去查一下相关资料,这里只是简单介绍一下: 1.贝叶斯公式: P(A|B)=P(AB)/P(B) 2.贝叶斯推断: P(A|B)=P(A)×P(

  • python 机器学习之实现朴素贝叶斯算法的示例

    特点 这是分类算法贝叶斯算法的较为简单的一种,整个贝叶斯分类算法的核心就是在求解贝叶斯方程P(y|x)=[P(x|y)P(y)]/P(x) 而朴素贝叶斯算法就是在牺牲一定准确率的情况下强制特征x满足独立条件,求解P(x|y)就更为方便了 但基本上现实生活中,没有任何关系的两个特征几乎是不存在的,故朴素贝叶斯不适合那些关系密切的特征 from collections import defaultdict import numpy as np from sklearn.datasets import

  • Python中利用LSTM模型进行时间序列预测分析的实现

    时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的. 举个栗子:根据过去两年某股票的每天的股价数据推测之后一周的股价变化:根据过去2年某店铺每周想消费人数预测下周来店消费的人数等等 RNN 和 LSTM 模型 时间序列模型最常用最强大的的工具就是递归神经网络(recurrent neural n

  • Python实现的朴素贝叶斯分类器示例

    本文实例讲述了Python实现的朴素贝叶斯分类器.分享给大家供大家参考,具体如下: 因工作中需要,自己写了一个朴素贝叶斯分类器. 对于未出现的属性,采取了拉普拉斯平滑,避免未出现的属性的概率为零导致整个条件概率都为零的情况出现. 朴素贝叶斯的基本原理网上很容易查到,这里不再叙述,直接附上代码 因工作中需要,自己写了一个朴素贝叶斯分类器.对于未出现的属性,采取了拉普拉斯平滑,避免未出现的属性的概率为零导致整个条件概率都为零的情况出现. class NBClassify(object): def _

  • python编写朴素贝叶斯用于文本分类

    朴素贝叶斯估计 朴素贝叶斯是基于贝叶斯定理与特征条件独立分布假设的分类方法.首先根据特征条件独立的假设学习输入/输出的联合概率分布,然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y. 具体的,根据训练数据集,学习先验概率的极大似然估计分布 以及条件概率为 Xl表示第l个特征,由于特征条件独立的假设,可得 条件概率的极大似然估计为 根据贝叶斯定理 则由上式可以得到条件概率P(Y=ck|X=x). 贝叶斯估计 用极大似然估计可能会出现所估计的概率为0的情况.后影响到后验概率结果

  • Python如何使用神经网络进行简单文本分类

    深度学习无处不在.在本文中,我们将使用Keras进行文本分类. 准备数据集 出于演示目的,我们将使用  20个新闻组  数据集.数据分为20个类别,我们的工作是预测这些类别.如下所示: 通常,对于深度学习,我们将划分训练和测试数据. 导入所需的软件包 Python import pandas as pd import numpy as np import pickle from keras.preprocessing.text import Tokenizer from keras.models

  • python使用RNN实现文本分类

    本文实例为大家分享了使用RNN进行文本分类,python代码实现,供大家参考,具体内容如下 1.本博客项目由来是oxford 的nlp 深度学习课程第三周作业,作业要求使用LSTM进行文本分类.和上一篇CNN文本分类类似,本此代码风格也是仿照sklearn风格,三步走形式(模型实体化,模型训练和模型预测)但因为训练时间较久不知道什么时候训练比较理想,因此在次基础上加入了继续训练的功能. 2.构造文本分类的rnn类,(保存文件为ClassifierRNN.py) 2.1 相应配置参数因为较为繁琐,

  • Python通过朴素贝叶斯和LSTM分别实现新闻文本分类

    目录 一.项目背景 二.数据处理与分析 三.基于机器学习的文本分类–朴素贝叶斯 1. 模型介绍 2. 代码结构 3. 结果分析 四.基于深度学习的文本分类–LSTM 1. 模型介绍 2. 代码结构 3. 结果分析 五.小结 一.项目背景 本项目来源于天池⼤赛,利⽤机器学习和深度学习等知识,对新闻⽂本进⾏分类.⼀共有14个分类类别:财经.彩票.房产.股票.家居.教育.科技.社会.时尚.时政.体育.星座.游戏.娱乐. 最终将测试集的预测结果上传⾄⼤赛官⽹,可查看排名.评价标准为类别f1_score的

  • python实现朴素贝叶斯分类器

    本文用的是sciki-learn库的iris数据集进行测试.用的模型也是最简单的,就是用贝叶斯定理P(A|B) = P(B|A)*P(A)/P(B),计算每个类别在样本中概率(代码中是pLabel变量) 以及每个类下每个特征的概率(代码中是pNum变量). 写得比较粗糙,对于某个类下没有此特征的情况采用p=1/样本数量. 有什么错误有人发现麻烦提出,谢谢. [python] view plain copy # -*- coding:utf-8 -*- from numpy import * fr

  • python机器学习朴素贝叶斯算法及模型的选择和调优详解

    目录 一.概率知识基础 1.概率 2.联合概率 3.条件概率 二.朴素贝叶斯 1.朴素贝叶斯计算方式 2.拉普拉斯平滑 3.朴素贝叶斯API 三.朴素贝叶斯算法案例 1.案例概述 2.数据获取 3.数据处理 4.算法流程 5.注意事项 四.分类模型的评估 1.混淆矩阵 2.评估模型API 3.模型选择与调优 ①交叉验证 ②网格搜索 五.以knn为例的模型调优使用方法 1.对超参数进行构造 2.进行网格搜索 3.结果查看 一.概率知识基础 1.概率 概率就是某件事情发生的可能性. 2.联合概率 包

  • python 实现朴素贝叶斯算法的示例

    特点 这是分类算法贝叶斯算法的较为简单的一种,整个贝叶斯分类算法的核心就是在求解贝叶斯方程P(y|x)=[P(x|y)P(y)]/P(x) 而朴素贝叶斯算法就是在牺牲一定准确率的情况下强制特征x满足独立条件,求解P(x|y)就更为方便了 但基本上现实生活中,没有任何关系的两个特征几乎是不存在的,故朴素贝叶斯不适合那些关系密切的特征 from collections import defaultdict import numpy as np from sklearn.datasets import

  • python实现朴素贝叶斯算法

    本代码实现了朴素贝叶斯分类器(假设了条件独立的版本),常用于垃圾邮件分类,进行了拉普拉斯平滑. 关于朴素贝叶斯算法原理可以参考博客中原理部分的博文. #!/usr/bin/python # -*- coding: utf-8 -*- from math import log from numpy import* import operator import matplotlib import matplotlib.pyplot as plt from os import listdir def

  • Python实现朴素贝叶斯的学习与分类过程解析

    概念简介: 朴素贝叶斯基于贝叶斯定理,它假设输入随机变量的特征值是条件独立的,故称之为"朴素".简单介绍贝叶斯定理: 乍看起来似乎是要求一个概率,还要先得到额外三个概率,有用么?其实这个简单的公式非常贴切人类推理的逻辑,即通过可以观测的数据,推测不可观测的数据.举个例子,也许你在办公室内不知道外面天气是晴天雨天,但是你观测到有同事带了雨伞,那么可以推断外面八成在下雨. 若X 是要输入的随机变量,则Y 是要输出的目标类别.对X 进行分类,即使求的使P(Y|X) 最大的Y值.若X 为n 维

  • 朴素贝叶斯算法的python实现方法

    本文实例讲述了朴素贝叶斯算法的python实现方法.分享给大家供大家参考.具体实现方法如下: 朴素贝叶斯算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对输入数据的准备方式敏感 适用数据类型:标称型数据 算法思想: 比如我们想判断一个邮件是不是垃圾邮件,那么我们知道的是这个邮件中的词的分布,那么我们还要知道:垃圾邮件中某些词的出现是多少,就可以利用贝叶斯定理得到. 朴素贝叶斯分类器中的一个假设是:每个特征同等重要 函数 loadDataSet() 创建数据集,这里的数据集

  • Python编程之基于概率论的分类方法:朴素贝叶斯

    概率论啊概率论,差不多忘完了. 基于概率论的分类方法:朴素贝叶斯 1. 概述 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.本章首先介绍贝叶斯分类算法的基础--贝叶斯定理.最后,我们通过实例来讨论贝叶斯分类的中最简单的一种: 朴素贝叶斯分类. 2. 贝叶斯理论 & 条件概率 2.1 贝叶斯理论 我们现在有一个数据集,它由两类数据组成,数据分布如下图所示: 我们现在用 p1(x,y) 表示数据点 (x,y) 属于类别 1(图中用圆点表示的类别)的概率,用 p2(

随机推荐