python OpenCV学习笔记

图像翻转

使用Python的一个包,imutils。使用下面的指令可以安装。

pip install imutils

imutils包的Github地址:https://github.com/jrosebr1/imutils

CSDN镜像:https://codechina.csdn.net/mirrors/jrosebr1/imutils

可以在上面这个地址里面学习更多的使用方式。

import cv2
import imutils

'''
imutils.rotate
第一个参数是翻转的图像,第二个参数的翻转角度
函数还提供翻转中心的设置,但默认就是中心翻转。
'''
vc = cv2.VideoCapture(0)

if vc.isOpened():
  flag, frame = vc.read()
  img = imutils.rotate(frame, 180)  # 图像翻转
  cv2.imshow("frame", img)
else:
  flag = False

while flag:
  flag, frame = vc.read()
  if frame is None:
    break
  if flag is True:
    img = imutils.rotate(frame, 180)  # 图像翻转
    cv2.imshow("frame", img)
    if cv2.waitKey(10) == 27:
      break
vc.release()
cv2.destroyAllWindows()

这样写的话,最后的输出图像就是翻转180度的。

imutils包里还有其他好用的函数,resizing、4-point Perspective Transform、Sorting Contours等等。

图像轮廓排序

这个效果同样也是依靠imutils包完成。

from imutils import contours
import cv2
'''
contours.sort_contours
可选排序方式:"left-to-right", "right-to-left", "top-to-bottom", "bottom-to-top"
返回值为轮廓和外接矩形

contours.label_contour
contours包内自带的画轮廓的函数,可以直接用,然后可以在图片上标出轮廓序号
也可以直接使用cv2.drawContours直接画轮廓
'''
img = cv2.imread(r"D:\opencv-workspace\Opencv\test17--VScode\shapes.png")
draw_img = img.copy()
img_rect = img.copy()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.Canny(gray, 10, 20)  # Canny边缘检测
cnts, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)  # 获得轮廓
(cnts, boundingBoxes) = contours.sort_contours(cnts, "top-to-bottom")  # 对轮廓进行排序处理
for (i, c) in enumerate(cnts):
  sortedImage = contours.label_contour(draw_img, c, i, color=(240, 0, 159))
# img_out = cv2.drawContours(draw_img, cnts, -1, (240, 0, 159), 2)
# 根据boundingBoxes画外接矩形
for (x, y, w, h) in boundingBoxes:
  img_rect = cv2.rectangle(img_rect, (x, y), (x+w, y+h), (240, 0, 159), 2)
cv2.imshow("top-to-bottom", sortedImage)
cv2.imshow("rect", img_rect)
cv2.waitKey(0)
cv2.destroyAllWindows()

这样写的话,最后的输出图像就是翻转180度的。

imutils包里还有其他好用的函数,resizing、4-point Perspective Transform、Sorting Contours等等。

图像轮廓排序

这个效果同样也是依靠imutils包完成。

from imutils import contours
import cv2
'''
contours.sort_contours
可选排序方式:"left-to-right", "right-to-left", "top-to-bottom", "bottom-to-top"
返回值为轮廓和外接矩形

contours.label_contour
contours包内自带的画轮廓的函数,可以直接用,然后可以在图片上标出轮廓序号
也可以直接使用cv2.drawContours直接画轮廓
'''
img = cv2.imread(r"D:\opencv-workspace\Opencv\test17--VScode\shapes.png")
draw_img = img.copy()
img_rect = img.copy()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.Canny(gray, 10, 20)  # Canny边缘检测
cnts, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)  # 获得轮廓
(cnts, boundingBoxes) = contours.sort_contours(cnts, "top-to-bottom")  # 对轮廓进行排序处理
for (i, c) in enumerate(cnts):
  sortedImage = contours.label_contour(draw_img, c, i, color=(240, 0, 159))
# img_out = cv2.drawContours(draw_img, cnts, -1, (240, 0, 159), 2)
# 根据boundingBoxes画外接矩形
for (x, y, w, h) in boundingBoxes:
  img_rect = cv2.rectangle(img_rect, (x, y), (x+w, y+h), (240, 0, 159), 2)
cv2.imshow("top-to-bottom", sortedImage)
cv2.imshow("rect", img_rect)
cv2.waitKey(0)
cv2.destroyAllWindows()

颜色识别

基础颜色识别

颜色识别是在HSV空间内进行的,因此在使用之前先进行颜色空间的转换。

'''使用下面这个函数进行转换,第一个参数填写要转换的图片,第二个参数填写cv2.COLOR_BGR2HSV'''
cv2.cvtColor
import cv2
import numpy as np
'''
cv2.inRange
函数很简单,参数有三个
第一个参数:hsv指的是原图
第二个参数:lower_red指的是图像中低于这个lower_red的值,图像值变为0
第三个参数:upper_red指的是图像中高于这个upper_red的值,图像值变为0
而在lower_red~upper_red之间的值变成255
'''
# 阈值
lower_green = np.array([50, 255, 255])
upper_green = np.array([70, 255, 255])
img = cv2.imread(r"D:\opencv-workspace\Opencv\test16--VScode\photo.jpg")
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask_green = cv2.inRange(img_hsv, lower_green, upper_green)
cv2.imshow("img_or", mask_green)
# 使用下面这个函数能显示原来的颜色。
res_green = cv2.bitwise_and(img, img, mask=mask_green)
cv2.imshow("img", res_green)
cv2.waitKey(0)
cv2.destroyAllWindows()

在进行颜色识别时,难免会出现“漏颜色”的现象,也就是会出现没识别全的现象。这个时候可以再对图像进行处理,比如说进行形态学处理,让图像更加饱满之类的。

根据BGR获取HSV

import cv2

color = np.uint8([[[193, 189, 147]]])  # 参数填写BGR的值
hsv = cv2.cvtColor(color, cv2.COLOR_BGR2HSV)
print(hsv)  # 打印出来的数值就是对应的HSV值

程序运行的结果是

[[[ 93 61 193]]]

这个就是对应的HSV的值。

根据之前写的颜色识别,就需要把对应的阈值写出。具体写法就是保持S和V不变,H加减10。这样的话就可以写出高低阈值然后应用到颜色识别里面就可以了。

阈值编辑器

import cv2
import numpy as np

def function(x):
  lowH = cv2.getTrackbarPos("lowH", "img_666")
  lowS = cv2.getTrackbarPos("lowS", "img_666")
  lowV = cv2.getTrackbarPos("lowV", "img_666")
  HighH = cv2.getTrackbarPos("HighH", "img_666")
  HighS = cv2.getTrackbarPos("HighS", "img_666")
  HighV = cv2.getTrackbarPos("HighV", "img_666")
  # print(lowH, lowS, lowV, HighH, HighS, HighV)
  lower = np.uint8([lowH, lowS, lowV])
  upper = np.uint8([HighH, HighS, HighV])
  mask = cv2.inRange(img_hsv, lower, upper)
  res = cv2.bitwise_and(img, img, mask=mask)
  cv2.imshow("img", res)

img = cv2.imread(r"D:\opencv-workspace\Opencv\test16--VScode\test.jpg")
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
cv2.namedWindow("img_666")
cv2.createTrackbar("lowH", "img_666", 0, 179, function)
cv2.createTrackbar("lowS", "img_666", 0, 255, function)
cv2.createTrackbar("lowV", "img_666", 0, 255, function)
cv2.createTrackbar("HighH", "img_666", 0, 179, function)
cv2.createTrackbar("HighS", "img_666", 0, 255, function)
cv2.createTrackbar("HighV", "img_666", 0, 255, function)
cv2.imshow("img", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

写了一个比较垃圾的阈值编辑器。。。就不多解释了。。

以上就是python OpenCV学习笔记的详细内容,更多关于python OpenCV的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python+Opencv实现数字识别的示例代码

    一.什么是数字识别?   所谓的数字识别,就是使用算法自动识别出图片中的数字.具体的效果如下图所示: 上图展示了算法的处理效果,算法能够自动的识别到LCD屏幕上面的数字,这在现实场景中具有很大的实际应用价值.下面我们将对它的实现细节进行详细解析. 二.如何实现数字识别?   对于数字识别这个任务而言,它并不是一个新的研究方向,很久之前就有很多的学者们在关注这个问题,并提出了一些可行的解决方案,本小节我们将对这些方案进行简单的总结. 方案一:使用现成的OCR技术. OCR,即文字识别,它是一个比较

  • python opencv实现图像配准与比较

    本文实例为大家分享了python opencv实现图像配准与比较的具体代码,供大家参考,具体内容如下 代码 from skimage import io import cv2 as cv import numpy as np import matplotlib.pyplot as plt img_path1 = '2_HE_maxarea.png' img_path2 = '2_IHC_maxarea.png' img1 = io.imread(img_path1) img2 = io.imre

  • Python OpenCV 基于图像边缘提取的轮廓发现函数

    基础知识铺垫 在图像中,轮廓可以简单的理解为连接具有相同颜色的所有连续点(边界)的曲线,轮廓可用于形状分析和对象检测.识别等领域. 轮廓发现的原理:先通过阈值分割提取目标物体,再通过边缘检测提取目标物体轮廓. 一个轮廓就是一系列的点(像素),这些点构成了一个有序的点集合. 使用 cv2.findContours 函数可以用来检测图像的边缘. 函数原型说明 contours, hierarchy = cv2.findContours(image, mode, method[, contours[,

  • python利用opencv实现颜色检测

    本文实例为大家分享了python利用opencv实现颜色检测的具体代码,供大家参考,具体内容如下 需要实现倒车辅助标记检测的功能,倒车辅助标记颜色已经确定了,所以不需要使用深度学习的方法,那样成本太高了,直接可以使用颜色检测的方法. 1.首先需要确定待检测目标的HSV值 import cv2 img = cv2.imread('l3.png') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) hsv = cv2.cvtColor(img, cv2.COL

  • OpenCV+Python几何变换的实现示例

    几何变换 图像的几何变换是指将一幅图像映射到另一幅图像内.有缩放.翻转.仿射变换.透视.重映射等操作. 1 缩放 使用cv2.resize()函数实现对图像的缩放,但要注意cv2.resize()函数内的dsize参数与原图像的行列属性是相反的,也就是:目标图像的行数是原始图像的列数,目标图像的列数是原始图像的行数. 下面举例说明cv2.resize()函数的用法: import cv2 img=cv2.imread('E:/python_opencv/tupian.jpg') rows,col

  • python基于OpenCV模板匹配识别图片中的数字

    前言 本博客主要实现利用OpenCV的模板匹配识别图像中的数字,然后把识别出来的数字输出到txt文件中,如果识别失败则输出"读取失败". 操作环境: OpenCV - 4.1.0 Python 3.8.1 程序目标 单个数字模板:(这些单个模板是我自己直接从图片上截取下来的) 要处理的图片: 终端输出: 文本输出: 思路讲解 代码讲解 首先定义两个会用到的函数 第一个是显示图片的函数,这样的话在显示图片的时候就比较方便了 def cv_show(name, img): cv2.imsh

  • python+opencv实现车道线检测

    python+opencv车道线检测(简易实现),供大家参考,具体内容如下 技术栈:python+opencv 实现思路: 1.canny边缘检测获取图中的边缘信息: 2.霍夫变换寻找图中直线: 3.绘制梯形感兴趣区域获得车前范围: 4.得到并绘制车道线: 效果展示: 代码实现: import cv2 import numpy as np def canny(): gray = cv2.cvtColor(lane_image, cv2.COLOR_RGB2GRAY) #高斯滤波 blur = c

  • Python opencv操作深入详解

    直接读取图片 def display_img(file="p.jpeg"): img = cv.imread(file) print (img.shape) cv.imshow('image',img) cv.waitKey(0) cv.destroyAllWindows() 读取灰度图片 def display_gray_img(file="p.jpeg"): img = cv.imread(file,cv.IMREAD_GRAYSCALE) print (img

  • Python OpenCV高斯金字塔与拉普拉斯金字塔的实现

    基础知识铺垫 学习图像金字塔,发现网上的资料比较多,检索起来比较轻松. 图像金字塔是一张图像多尺度的表达,或者可以理解成一张图像不同分辨率展示. 金字塔越底层的图片,像素越高,越向上,像素逐步降低,分辨率逐步降低. 高斯金字塔 我们依旧不对概念做过多解释,第一遍学习应用,应用,毕竟 365 天的周期,时间长,后面补充理论知识. 高斯金字塔用于向下采样,同时它也是最基本的图像塔. 在互联网检索原理,得到最简单的说明如下: 将图像的最底层(高斯金字塔的第 0 层),例如高斯核(5x5)对其进行卷积操

  • python中的opencv和PIL(pillow)转化操作

    opencv > pil import cv2 from PIL import Image img = cv2.imread("test.png") image = Image.fromarray(cv2.cvtColor(img,cv2.COLOR_BGR2RGB)) pil > opencv import cv2 from PIL import Image image = Image.open("test.png") img = cv2.cvtCol

随机推荐