pandas group分组与agg聚合的实例

如下:

import pandas as pd

df = pd.DataFrame({'Country':['China','China', 'India', 'India', 'America', 'Japan', 'China', 'India'],
     'Income':[10000, 10000, 5000, 5002, 40000, 50000, 8000, 5000],
     'Age':[5000, 4321, 1234, 4010, 250, 250, 4500, 4321]})

构造的数据如下:

 Age Country Income
0 5000 China 10000
1 4321 China 10000
2 1234 India 5000
3 4010 India 5002
4 250 America 40000
5 250 Japan 50000
6 4500 China 8000
7 4321 India 5000

分组

单列分组

df_gb = df.groupby('Country')
for index, data in df_gb:
 print(index)
 print(data)

输出

America
 Age Country Income
4 250 America 40000
China
 Age Country Income
0 5000 China 10000
1 4321 China 10000
6 4500 China 8000
India
 Age Country Income
2 1234 India 5000
3 4010 India 5002
7 4321 India 5000
Japan
 Age Country Income
5 250 Japan 50000

多列分组

df_gb = df.groupby(['Country', 'Income'])
for (index1, index2), data in df_gb:
 print((index1, index2))
 print(data)

输出

('America', 40000)
 Age Country Income
4 250 America 40000
('China', 8000)
 Age Country Income
6 4500 China 8000
('China', 10000)
 Age Country Income
0 5000 China 10000
1 4321 China 10000
('India', 5000)
 Age Country Income
2 1234 India 5000
7 4321 India 5000
('India', 5002)
 Age Country Income
3 4010 India 5002
('Japan', 50000)
 Age Country Income
5 250 Japan 50000

聚合

对分组后数据进行聚合

默认情况对分组之后其他列进行聚合

df_agg = df.groupby('Country').agg(['min', 'mean', 'max'])
print(df_agg)

输出

 Age     Income
   min   mean max min   mean max
Country
America 250 250.000000 250 40000 40000.000000 40000
China 4321 4607.000000 5000 8000 9333.333333 10000
India 1234 3188.333333 4321 5000 5000.666667 5002
Japan  250 250.000000 250 50000 50000.000000 50000

对分组后的部分列进行聚合

某些情况,只需要对部分数据进行不同的聚合操作,可以通过字典来构建

num_agg = {'Age':['min', 'mean', 'max']}
print(df.groupby('Country').agg(num_agg))

输出

 Age
   min   mean max
Country
America 250 250.000000 250
China 4321 4607.000000 5000
India 1234 3188.333333 4321
Japan  250 250.000000 250
num_agg = {'Age':['min', 'mean', 'max'], 'Income':['min', 'max']}
print(df.groupby('Country').agg(num_agg))

输出

  Age     Income
   min   mean max min max
Country
America 250 250.000000 250 40000 40000
China 4321 4607.000000 5000 8000 10000
India 1234 3188.333333 4321 5000 5002
Japan  250 250.000000 250 50000 50000

补充:pandas——很全的groupby、agg,对表格数据分组与统计

我这篇groupby写的不好。太复杂了。其实实际上经常用的就那么几个。举个例子,把常用的往那一放就很容易理解和拿来用了。日后再写一篇。

groupby功能:分组

groupby + agg(聚集函数们): 分组后,对各组应用一些函数,如'sum',‘mean',‘max',‘min'…

groupby默认纵方向上分组,axis=0

DataFrame
import pandas as pd
import numpy as np
 df = pd.DataFrame({'key1':['a', 'a', 'b', 'b', 'a'],
     'key2':['one', 'two', 'one', 'two', 'one'],
     'data1':np.random.randn(5),
     'data2':np.random.randn(5)})
print(df)
  data1  data2 key1 key2
0 -0.410122 0.247895 a one
1 -0.627470 -0.989268 a two
2 0.179488 -0.054570 b one
3 -0.299878 -1.640494 b two
4 -0.297191 0.954447 a one

分组,并对分组进行迭代

list(df.groupby(['key1']))#list后得到:[(group1),(group2),......]
[('a',  data1  data2 key1 key2
 0 -0.410122 0.247895 a one
 1 -0.627470 -0.989268 a two
 4 -0.297191 0.954447 a one), ('b',  data1  data2 key1 key2
 2 0.179488 -0.054570 b one
 3 -0.299878 -1.640494 b two)]

list后得到:[(group1),(group2),…]

每个数据片(group)格式: (name,group)元组

1. 按key1(一个列)分组,其实是按key1的值

groupby对象支持迭代,产生一组二元元组:(分组名,数据块),(分组名,数据块)…

for name,group in df.groupby(['key1']):
 print(name)
 print(group)
a
  data1  data2 key1 key2
0 -0.410122 0.247895 a one
1 -0.627470 -0.989268 a two
4 -0.297191 0.954447 a one
b
  data1  data2 key1 key2
2 0.179488 -0.054570 b one
3 -0.299878 -1.640494 b two

2. 按[key1, key2](多个列)分组

对于多重键,产生的一组二元元组:((k1,k2),数据块),((k1,k2),数据块)…

第一个元素是由键值组成的元组

for name,group in df.groupby(['key1','key2']):
 print(name) #name=(k1,k2)
 print(group)
('a', 'one')
  data1  data2 key1 key2
0 -0.410122 0.247895 a one
4 -0.297191 0.954447 a one
('a', 'two')
  data1  data2 key1 key2
1 -0.62747 -0.989268 a two
('b', 'one')
  data1 data2 key1 key2
2 0.179488 -0.05457 b one
('b', 'two')
  data1  data2 key1 key2
3 -0.299878 -1.640494 b two

3. 按函数分组

4. 按字典分组

5. 按索引级别分组

6.将函数跟数组、列表、字典、Series混合使用也不是问题,因为任何东西最终都会被转换为数组

将这些数据片段做成字典

dict(list(df.groupby(['key1'])))#dict(list())
{'a':  data1  data2 key1 key2
 0 -0.410122 0.247895 a one
 1 -0.627470 -0.989268 a two
 4 -0.297191 0.954447 a one, 'b':  data1  data2 key1 key2
 2 0.179488 -0.054570 b one
 3 -0.299878 -1.640494 b two}

分组后进行一些统计、计算等

1. 分组后,返回一个含有分组大小的Series

按key1分组

df.groupby(['key1']).size()
key1
a 3
b 2
dtype: int64
dict(['a1','x2','e3'])

{'a': '1', 'e': '3', 'x': '2'}

按[key1,key2]分组

df.groupby(['key1','key2']).size()
key1 key2
a  one  2
  two  1
b  one  1
  two  1
dtype: int64

2. 对data1按key1进行分组,并计算data1列的平均值

df['data1'].groupby(df['key1']).mean()
#groupby没有进行任何的计算。它只是进行了一个分组
key1
a -0.444928
b -0.060195
Name: data1, dtype: float64
df.groupby(['key1'])['data1'].mean()#理解:对df按key1分组,并计算分组后df['data1']的均值
#等价于:df.groupby(['key1']).data1.mean()
key1
a -0.444928
b -0.060195
Name: data1, dtype: float64

说明:

groupby没有进行任何的计算。它只是进行了一个分组。

数据(Series)根据分组键进行了聚合,产生了一个新的Series,其索引为key1列中的唯一值。

这种索引操作所返回的对象是一个已分组的DataFrame(如果传入的是列表或数组)或已分组的Series

df.groupby(['key1'])['data1'].size()
key1
a 3
b 2
Name: data1, dtype: int64

3.对data1按[key1,key2]进行分组,并计算data1的平均值

df['data1'].groupby([df['key1'],df['key2']]).mean()
key1 key2
a  one -0.353657
  two -0.627470
b  one  0.179488
  two -0.299878
Name: data1, dtype: float64
df.groupby(['key1','key2'])['data1'].mean()
#等价于:df.groupby(['key1','key2']).data1'.mean()
key1 key2
a  one -0.353657
  two -0.627470
b  one  0.179488
  two -0.299878
Name: data1, dtype: float64

通过两个键对数据进行了分组,得到的Series具有一个层次化索引(由唯一的键对组成):

df.groupby(['key1','key2'])['data1'].mean().unstack()
key2 one two
key1
a -0.353657 -0.627470
b 0.179488 -0.299878

在上面这些示例中,分组键均为Series。实际上,分组键可以是任何长度适当的数组。非常灵活。

横方向上

按列的数据类型(df.dtypes)来分

df共两种数据类型:float64和object,所以会分为两组(dtype(‘float64'),数据片),(dtype(‘O'), 数据片)

list(df.groupby(df.dtypes, axis=1))
[(dtype('float64'),  data1  data2
 0 -0.410122 0.247895
 1 -0.627470 -0.989268
 2 0.179488 -0.054570
 3 -0.299878 -1.640494
 4 -0.297191 0.954447), (dtype('O'), key1 key2
 0 a one
 1 a two
 2 b one
 3 b two
 4 a one)]

agg的应用

groupby+agg 可以对groupby的结果同时应用多个函数

SeriesGroupBy的方法agg()参数:

aggregate(self, func_or_funcs, * args, ** kwargs)
func: function, string, dictionary, or list of string/functions

返回:aggregated的Series

s= pd.Series([10,20,30,40])
s
0 10
1 20
2 30
3 40
dtype: int64
for n,g in s.groupby([1,1,2,2]):
 print(n)
 print(g)
0 10
1 20
dtype: int64
2
2 30
3 40
dtype: int64
s.groupby([1,1,2,2]).min()
1
1 10
2 30
dtype: int64
#等价于这个:
s.groupby([1,1,2,2]).agg('min')
1 10
2 30
dtype: int64
s.groupby([1,1,2,2]).agg(['min','max'])#加[],func仅接受一个参数
min max
1 10 20
2 30 40

常常这样用:

df

data1 data2 key1 key2
0 -0.410122 0.247895 a one
1 -0.627470 -0.989268 a two
2 0.179488 -0.054570 b one
3 -0.299878 -1.640494 b two
4 -0.297191 0.954447 a one

比较下面,可以看出agg的用处:

df.groupby(['key1'])['data1'].min()
key1
a -0.627470
b -0.299878
Name: data1, dtype: float64
df.groupby(['key1'])['data1'].agg({'min'})
min
key1
a -0.627470
b -0.299878
#推荐用这个√
df.groupby(['key1']).agg({'data1':'min'})#对data1列,取各组的最小值,名字还是data1
data1
key1
a -0.627470
b -0.299878
#按key1分组后,aggregate各组data1的最小值和最大值:
df.groupby(['key1'])['data1'].agg({'min','max'})
max min
key1
a -0.297191 -0.627470
b 0.179488 -0.299878
#推荐用这个√
df.groupby(['key1']).agg({'data1':['min','max']})
data1
min max
key1
a -0.627470 -0.297191
b -0.299878 0.179488

可以对groupby的结果更正列名(不推荐用这个,哪怕在后面单独更改列名)

# 对data1,把min更名为a,max更名为b
df.groupby(['key1'])['data1'].agg({'a':'min','b':'max'})#这里的'min' 'max'为两个函数名
d:\python27\lib\site-packages\ipykernel_launcher.py:2: FutureWarning: using a dict on a Series for aggregation
is deprecated and will be removed in a future version
a b
key1
a -0.627470 -0.297191
b -0.299878 0.179488

重要技巧: groupby之后直接.reset_index()可以得到一个没有多级索引的DataFrame

之后可以通过df.rename({‘old_col1':‘new_col1',‘old_col2':‘new_col2',…})重命名

eg:

df1= df.groupby(['date'])['price'].agg({'sum','count'}).reset_index()

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。

(0)

相关推荐

  • pandas 实现某一列分组,其他列合并成list

    pandas列转换为字典,但将相同第一列(键)的所有值合并为一个键 形式一: import pandas as pd # data data = pd.DataFrame({'column1':['key1','key1','key2','key2'], 'column2':['value1','value2','value3','value3']}) print(data) # Grouped dict data_dict = data.groupby('column1').column2.a

  • pandas groupby分组对象的组内排序解决方案

    问题: 根据数据某列进行分组,选择其中另一列大小top-K的的所在行数据 解析: 求解思路很清晰,即先用groupby对数据进行分组,然后再根据分组后的某一列进行排序,选择排序结果后的top-K结果 案例: 取一下dataframe中B列各对象中C值最高所在的行 df = pd.DataFrame({"A": [2, 3, 5, 4], "B": ['a', 'b', 'b', 'a'], "C": [200801, 200902, 200704

  • Pandas中DataFrame的分组/分割/合并的实现

    学习<Python3爬虫.数据清洗与可视化实战>时自己的一些实践. DataFrame分组操作 注意分组后得到的就是Series对象了,而不再是DataFrame对象. import pandas as pd # 还是读取这份文件 df = pd.read_csv("E:/Data/practice/taobao_data.csv", delimiter=',', encoding='utf-8', header=0) # 计算'成交量'按'位置'分组的平均值 groupe

  • pandas分组排序 如何获取第二大的数据

    Python用来做数据分析很方便,网上很多关于找数据中第二大的方法,但是大多数都是关于SQL的,于是我挑战一下用Python来做这件事(主要是SQL写的不好>_<),上代码. 1.数据我是自己编的 在实际工作中应该从数据库中导入数据,如何从数据库导出数据,我之后会补充. import pandas as pd df = pd.DataFrame([ {"class": 1, "name": "aa", "english&qu

  • pandas 实现分组后取第N行

    目的: 把question_id 对应的user_answer转成ABCD solution dfa=df.groupby('question_id').nth(0).reset_index() dfa['flag']='A' dfb=df.groupby('question_id').nth(1).reset_index() dfb['flag']='B' dfc=df.groupby('question_id').nth(2).reset_index() dfc['flag']='C' df

  • pandas组内排序,并在每个分组内按序打上序号的操作

    问题: pandas组内排序,并在每个分组内按序打上序号 描述: pandas dataframe 对dep_id组内的salary排序.希望给下面原本只有前三列的dataframe,添加上第四列. 等价于sql里的排序函数 row_number() over() 功能 假设我已经建好了仅有前三列的dataframe,数据集命名为 MyData, 解决方案如下: MyData['sort_id'] = MyData['salary'].groupby(MyData['dep_id']).rank

  • pandas group分组与agg聚合的实例

    如下: import pandas as pd df = pd.DataFrame({'Country':['China','China', 'India', 'India', 'America', 'Japan', 'China', 'India'], 'Income':[10000, 10000, 5000, 5002, 40000, 50000, 8000, 5000], 'Age':[5000, 4321, 1234, 4010, 250, 250, 4500, 4321]}) 构造的数

  • Pandas数据分析多文件批次聚合处理实例解析

    目录 前言 一.多文件场景 方法一 方法二 二.多文件读取 前言 很多情况下我们处理的文件并不只是一个单纯的CSV文件或者Excel文件.我们会结合更多是数据去进行聚合统计分析,或许是需要解析到一整个数据存储压缩包,或许是对一整个目录文件读取再进行数据操作,这都需要我们掌握一定的多文件处理方法和策略.此篇文章正是基于此场景下处理多文件方法整合策略. 一.多文件场景 我们就以2020年CCF大数据与智能竞赛的数据来作为实例来处理: 现在我们有这么文本文件需要进行读取分析,按照往常我们一个一个读取显

  • pandas数据分组和聚合操作方法

    <Python for Data Analysis> GroupBy 分组运算:split-apply-combine(拆分-应用-合并) DataFrame可以在其行(axis=0)或列(axis=1)上进行分组.然后,将一个函数应用到各个分组并产生新值.最后,所有这些函数的执行结果会被合并到最终的结果对象中去. GroupBy的size方法可以返回一个含有分组大小的Series. 对分组进行迭代 for (k1,k2), group in df.groupby(['key1','key2'

  • Django分组聚合查询实例分享

    多表查询 1. 增删改 一对多:先一后多,外键可以为对象或依赖表的主键(publish and book) publish = Publish.objects.create() Book.objects.create(....publish=publish|publish_id=publish.id) 删: 默认存在级联删除 改: book修改外键,外键一定存在 多对多: 关系表的获取(book(主键) and author) book.author 增:book.author.add(作者对象

  • pandas数据分组groupby()和统计函数agg()的使用

    数据分组 使用 groupby() 方法进行分组 group.size()查看分组后每组的数量 group.groups 查看分组情况 group.get_group('名字') 根据分组后的名字选择分组数据 准备数据 # 一个Series其实就是一条数据,Series方法的第一个参数是data,第二个参数是index(索引),如果没有传值会使用默认值(0-N) # index参数是我们自定义的索引值,注意:参数值的个数一定要相同. # 在创建Series时数据并不一定要是列表,也可以将一个字典

  • pandas多级分组实现排序的方法

    pandas有groupby分组函数和sort_values排序函数,但是如何对dataframe分组之后排序呢? In [70]: df = pd.DataFrame(((random.randint(2012, 2016), random.choice(['tech', 'art', 'office']), '%dk-%dk'%(random.randint(2,10), random.randint(10, 20)), '') for _ in xrange(10000)), column

  • pandas groupby 分组取每组的前几行记录方法

    直接上例子. import pandas as pd df = pd.DataFrame({'class':['a','a','b','b','a','a','b','c','c'],'score':[3,5,6,7,8,9,10,11,14]}) df: class score 0 a 3 1 a 5 2 b 6 3 b 7 4 a 8 5 a 9 6 b 10 7 c 11 8 c 14 df.sort_values(['class','score'],ascending=[1,0],inp

  • pandas之分组groupby()的使用整理与总结

    前言 在使用pandas的时候,有些场景需要对数据内部进行分组处理,如一组全校学生成绩的数据,我们想通过班级进行分组,或者再对班级分组后的性别进行分组来进行分析,这时通过pandas下的groupby()函数就可以解决.在使用pandas进行数据分析时,groupby()函数将会是一个数据分析辅助的利器. groupby的作用可以参考 超好用的 pandas 之 groupby 中作者的插图进行直观的理解: 准备 读入的数据是一段学生信息的数据,下面将以这个数据为例进行整理grouby()函数的

  • MySQL 分组查询和聚合函数

    概述 相信我们经常会遇到这样的场景:想要了解双十一天猫购买化妆品的人员中平均消费额度是多少(这可能有利于对商品价格区间的定位):或者不同年龄段的化妆品消费占比是多少(这可能有助于对商品备货量的预估). 这个时候就要用到分组查询,分组查询的目的是为了把数据分成多个逻辑组(购买化妆品的人员是一个组,不同年龄段购买化妆品的人员也是组),并对每个组进行聚合计算的过程:. 分组查询的语法格式如下: select cname, group_fun,... from tname [where conditio

随机推荐