Python 必须了解的5种高级特征

Python 是一种美丽的语言,它简单易用却非常强大。但你真的会用 Python 的所有功能吗?

任何编程语言的高级特征通常都是通过大量的使用经验才发现的。比如你在编写一个复杂的项目,并在 stackoverflow 上寻找某个问题的答案。然后你突然发现了一个非常优雅的解决方案,它使用了你从不知道的 Python 功能!

这种学习方式太有趣了:通过探索,偶然发现什么。

下面是 Python 的 5 种高级特征,以及它们的用法。

Lambda 函数

Lambda 函数是一种比较小的匿名函数——匿名是指它实际上没有函数名。

Python 函数通常使用 def a_function_name() 样式来定义,但对于 lambda 函数,我们根本没为它命名。这是因为 lambda 函数的功能是执行某种简单的表达式或运算,而无需完全定义函数。

lambda 函数可以使用任意数量的参数,但表达式只能有一个。

x = lambda a, b : a * b
print(x(5, 6)) # prints '30'

x = lambda a : a*3 + 3
print(x(3)) # prints '12'

看它多么简单!我们执行了一些简单的数学运算,而无需定义整个函数。这是 Python 的众多特征之一,这些特征使它成为一种干净、简单的编程语言。

Map 函数

Map() 是一种内置的 Python 函数,它可以将函数应用于各种数据结构中的元素,如列表或字典。对于这种运算来说,这是一种非常干净而且可读的执行方式。

def square_it_func(a):
 return a * a

x = map(square_it_func, [1, 4, 7])
print(x) # prints '[1, 16, 49]'

def multiplier_func(a, b):
 return a * b

x = map(multiplier_func, [1, 4, 7], [2, 5, 8])
print(x) # prints '[2, 20, 56]'看看上面的示例!我们可以将函数应用于单个或多个列表。实际上,你可以使用任何 Python 函数作为 map 函数的输入,只要它与你正在操作的序列元素是兼容的。

Filter 函数

filter 内置函数与 map 函数非常相似,它也将函数应用于序列结构(列表、元组、字典)。二者的关键区别在于 filter() 将只返回应用函数返回 True 的元素。

详情请看如下示例:

# Our numbers
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

# Function that filters out all numbers which are odd
def filter_odd_numbers(num):

 if num % 2 == 0:
  return True
 else:
  return False

filtered_numbers = filter(filter_odd_numbers, numbers)

print(filtered_numbers)
# filtered_numbers = [2, 4, 6, 8, 10, 12, 14]

我们不仅评估了每个列表元素的 True 或 False,filter() 函数还确保只返回匹配为 True 的元素。非常便于处理检查表达式和构建返回列表这两步。

Itertools 模块

Python 的 Itertools 模块是处理迭代器的工具集合。迭代器是一种可以在 for 循环语句(包括列表、元组和字典)中使用的数据类型。

使用 Itertools 模块中的函数让你可以执行很多迭代器操作,这些操作通常需要多行函数和复杂的列表理解。关于 Itertools 的神奇之处,请看以下示例:

from itertools import *

# Easy joining of two lists into a list of tuples
for i in izip([1, 2, 3], ['a', 'b', 'c']):
 print i
# ('a', 1)
# ('b', 2)
# ('c', 3)

# The count() function returns an interator that
# produces consecutive integers, forever. This
# one is great for adding indices next to your list
# elements for readability and convenience
for i in izip(count(1), ['Bob', 'Emily', 'Joe']):
 print i
# (1, 'Bob')
# (2, 'Emily')
# (3, 'Joe') 

# The dropwhile() function returns an iterator that returns
# all the elements of the input which come after a certain
# condition becomes false for the first time.
def check_for_drop(x):
 print 'Checking: ', x
 return (x > 5)

for i in dropwhile(should_drop, [2, 4, 6, 8, 10, 12]):
 print 'Result: ', i

# Checking: 2
# Checking: 4
# Result: 6
# Result: 8
# Result: 10
# Result: 12

# The groupby() function is great for retrieving bunches
# of iterator elements which are the same or have similar
# properties

a = sorted([1, 2, 1, 3, 2, 1, 2, 3, 4, 5])
for key, value in groupby(a):
 print(key, value), end=' ')

# (1, [1, 1, 1])
# (2, [2, 2, 2])
# (3, [3, 3])
# (4, [4])
# (5, [5]) 

Generator 函数

Generator 函数是一个类似迭代器的函数,即它也可以用在 for 循环语句中。这大大简化了你的代码,而且相比简单的 for 循环,它节省了很多内存。

比如,我们想把 1 到 1000 的所有数字相加,以下代码块的第一部分向你展示了如何使用 for 循环来进行这一计算。

如果列表很小,比如 1000 行,计算所需的内存还行。但如果列表巨长,比如十亿浮点数,这样做就会出现问题了。使用这种 for 循环,内存中将出现大量列表,但不是每个人都有无限的 RAM 来存储这么多东西的。Python 中的 range() 函数也是这么干的,它在内存中构建列表。

代码中第二部分展示了使用 Python generator 函数对数字列表求和。generator 函数创建元素,并只在必要时将其存储在内存中,即一次一个。这意味着,如果你要创建十亿浮点数,你只能一次一个地把它们存储在内存中!Python 2.x 中的 xrange() 函数就是使用 generator 来构建列表。

上述例子说明:如果你想为一个很大的范围生成列表,那么就需要使用 generator 函数。如果你的内存有限,比如使用移动设备或边缘计算,使用这一方法尤其重要。

也就是说,如果你想对列表进行多次迭代,并且它足够小,可以放进内存,那最好使用 for 循环或 Python 2.x 中的 range 函数。因为 generator 函数和 xrange 函数将会在你每次访问它们时生成新的列表值,而 Python 2.x range 函数是静态的列表,而且整数已经置于内存中,以便快速访问。

# (1) Using a for loopv
numbers = list()

for i in range(1000):
 numbers.append(i+1)

total = sum(numbers)

# (2) Using a generator
 def generate_numbers(n):
  num, numbers = 1, []
  while num < n:
   numbers.append(num)
  num += 1
  return numbers
 total = sum(generate_numbers(1000))

 # (3) range() vs xrange()
 total = sum(range(1000 + 1))
 total = sum(xrange(1000 + 1))

以上就是Python 必须了解的5种高级特征的详细内容,更多关于python 高级特征的资料请关注我们其它相关文章!

(0)

相关推荐

  • python高级特性简介

    Python中的五种特性:切片,迭代,列表生成式,生成器,迭代器. 切片 切片就相当于其他语言中的截断函数,取部分指定元素用的. L = list(range(100)) #利用切片取部分元素 print(L[0:10]) #取从索引从0到9的前10个元素 print(L[-10:]) #取最后10个元素 print(L[10:20])#取从索引10到19的10个元素 print(L[:10:2])#从前10个元素中每两个取一个元素 print(L[::10]) #所有元素中每10个取一个元素

  • Python高级特性与几种函数的讲解

    切片 从list或tuple中取部分元素. list = [1, 2, 3, 4] list[0 : 3] # [1, 2, 3] list[-2 : -1] # -1表示最后一个,[3, 4] list[1 :: 2] # index = 1开始,每两个取一个[2, 4] list[:] # 复制list,[1, 2, 3, 4] # 针对tuple,切片同样适用 iterable.iterator 可迭代,迭代器,集合类型数据可迭代但不是迭代器,可通过iter()转变为迭代器. 可迭代对象可

  • Python高级特性切片(Slice)操作详解

    切片操作首先支持下标索引,通过[ N:M :P ]操作 索引正向从0开始,逆向从-1开始 N:切片开始位置 M:切片结束位置(不包含) P:指定切片步长,为正数表示按照指定步长正向切片,为负数反之 一.列表的切片操作 列表切片后还是列表 通过列表生成器定义一个列表: In [2]: a = [n for n in range(10)] In [3]: a Out[3]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 通过切片浅拷贝对象: In [4]: a[:] Out[4]:

  • Python高级特性之闭包与装饰器实例详解

    本文实例讲述了Python高级特性之闭包与装饰器.分享给大家供大家参考,具体如下: 闭包 1.函数参数: (1)函数名存放的是函数的地址 (2)函数名()存放的是函数内的代码 (3)函数名只是函数代码空间的引用,当函数名赋值给一个对象的时候,就是引用传递 def func01(): print("func01 is show") test = func01 print(func01) print(test) test() 结果: 2.闭包: (1)内层函数可以访问外层函数变量 (2)闭

  • python高级特性和高阶函数及使用详解

    python高级特性 1.集合的推导式 •列表推导式,使用一句表达式构造一个新列表,可包含过滤.转换等操作. 语法:[exp for item in collection if codition] if codition - 可选 •字典推导式,使用一句表达式构造一个新列表,可包含过滤.转换等操作. 语法:{key_exp:value_exp for item in collection if codition} •集合推导式 语法:{exp for item in collection if

  • Python高级特性 切片 迭代解析

    切片:方便截取list.tuple.字符串部分索引的内容 正序切片 语法:dlist = doList[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3.即索引0,1,2,正好是3个元素 实例: dolist = [1,3,5,7,9,11] dlist = dolist[0:3] # 与range()函数一致含左不含右 nlist = dolist[:3] # 当开始值为0时,可以不写,效果与dlist一致 print(dlist) print(nlist) 运行结果: 倒序切片

  • Python高级特性——详解多维数组切片(Slice)

    (1) 我们先用arange函数创建一个数组并改变其维度,使之变成一个三维数组: >>> a = np.arange(24).reshape(2,3,4) >>> a array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]) 多维数组a中有0~23的整数,共24个元素,是一个2×3×4的三维数组.我们可以

  • Python进阶之全面解读高级特性之切片

    众所周知,我们可以通过索引值(或称下标)来查找序列类型(如字符串.列表.元组-)中的单个元素,那么,如果要获取一个索引区间的元素该怎么办呢? 切片(slice)就是一种截取索引片段的技术,借助切片技术,我们可以十分灵活地处理序列类型的对象.通常来说,切片的作用就是截取序列对象,然而,对于非序列对象,我们是否有办法做到切片操作呢?在使用切片的过程中,有什么要点值得重视,又有什么底层原理值得关注呢?本文将主要跟大家一起来探讨这些内容,希望我能与你共同学习进步. 1.切片的基础用法 列表是 Pytho

  • Python 必须了解的5种高级特征

    Python 是一种美丽的语言,它简单易用却非常强大.但你真的会用 Python 的所有功能吗? 任何编程语言的高级特征通常都是通过大量的使用经验才发现的.比如你在编写一个复杂的项目,并在 stackoverflow 上寻找某个问题的答案.然后你突然发现了一个非常优雅的解决方案,它使用了你从不知道的 Python 功能! 这种学习方式太有趣了:通过探索,偶然发现什么. 下面是 Python 的 5 种高级特征,以及它们的用法. Lambda 函数 Lambda 函数是一种比较小的匿名函数--匿名

  • 经验丰富程序员才知道的8种高级Python技巧

    本文将介绍8个简洁的Python技巧,若非经验十足的程序员,你肯定有些从未见过.向着更简洁更高效,出发吧! 1.通过多个键值将对象进行排序 假设要对以下字典列表进行排序: people = [ { 'name': 'John', "age": 64 }, { 'name': 'Janet', "age": 34 }, { 'name': 'Ed', "age": 24 }, { 'name': 'Sara', "age": 6

  • 经验丰富程序员才知道的15种高级Python小技巧(收藏)

    目录 1.通过多个键值将对象进行排序 2.数据类别 3.列表推导 4.检查对象的内存使用情况 5.查找最频繁出现的值 6.属性包 7.合并字典(Python3.5+) 8.返回多个值 9.列表元素的过滤 filter()的使用 10.修改列表 11.利用zip()来组合列表 12.颠倒列表 13.检查列表中元素的存在情况 14.展平嵌套列表 15.检查唯一性 1.通过多个键值将对象进行排序 假设要对以下字典列表进行排序: people = [ { 'name': 'John', "age&quo

  • 用Python解析XML的几种常见方法的介绍

    一.简介 XML(eXtensible Markup Language)指可扩展标记语言,被设计用来传输和存储数据,已经日趋成为当前许多新生技术的核心,在不同的领域都有着不同的应用.它是web发展到一定阶段的必然产物,既具有SGML的核心特征,又有着HTML的简单特性,还具有明确和结构良好等许多新的特性.         python解析XML常见的有三种方法:一是xml.dom.*模块,它是W3C DOM API的实现,若需要处理DOM API则该模块很适合,注意xml.dom包里面有许多模块

  • Python代码调试的几种方法总结

    使用 pdb 进行调试 pdb 是 python 自带的一个包,为 python 程序提供了一种交互的源代码调试功能,主要特性包括设置断点.单步调试.进入函数调试.查看当前代码.查看栈片段.动态改变变量的值等.pdb 提供了一些常用的调试命令,详情见表 1. 表 1. pdb 常用命令 下面结合具体的实例讲述如何使用 pdb 进行调试. 清单 1. 测试代码示例 import pdb a = "aaa" pdb.set_trace() b = "bbb" c = &

  • python中常用的九种预处理方法分享

    本文总结的是我们大家在python中常见的数据预处理方法,以下通过sklearn的preprocessing模块来介绍; 1. 标准化(Standardization or Mean Removal and Variance Scaling) 变换后各维特征有0均值,单位方差.也叫z-score规范化(零均值规范化).计算方式是将特征值减去均值,除以标准差. sklearn.preprocessing.scale(X) 一般会把train和test集放在一起做标准化,或者在train集上做标准化

  • 详解PyQt5信号与槽的几种高级玩法

    信号(Signal)和槽(Slot)是Qt中的核心机制,也是在PyQt编程中对象之间进行通信的机制.本文介绍了几种PyQt 5信号与槽的几级玩法. 在Qt中,每一个QObject对象和PyQt中所有继承自QWidget的控件(这些都是QObject的子对象)都支持信号与槽机制.当信号发射时,连接的槽函数将会自动执行.在PyQt 5中信号与槽通过object.signal.connect()方法连接. PyQt的窗口控件类中有很多内置信号,开发者也可以添加自定义信号.信号与槽具有如下特点. 一个信

  • Python实现常见的几种加密算法(MD5,SHA-1,HMAC,DES/AES,RSA和ECC)

    生活中我们经常会遇到一些加密算法,今天我们就聊聊这些加密算法的Python实现.部分常用的加密方法基本都有对应的Python库,基本不再需要我们用代码实现具体算法. MD5加密 全称:MD5消息摘要算法(英语:MD5 Message-Digest Algorithm),一种被广泛使用的密码散列函数,可以产生出一个128位(16字节)的散列值(hash value),用于确保信息传输完整一致.md5加密算法是不可逆的,所以解密一般都是通过暴力穷举方法,通过网站的接口实现解密.Python代码: i

  • python 合并列表的八种方法

    Python 语言里有许多(而且是越来越多)的高级特性,是 Python 发烧友们非常喜欢的.在这些人的眼里,能够写出那些一般开发者看不懂的高级特性,就是高手,就是大神. 但你要知道,在团队合作里,炫技是大忌. 为什么这么说呢?我说下自己的看法: 越简洁的代码,越清晰的逻辑,就越不容易出错: 在团队合作中,你的代码不只有你在维护,降低别人的阅读/理解代码逻辑的成本是一个良好的品德 简单的代码,只会用到最基本的语法糖,复杂的高级特性,会有更多的依赖(如语言的版本) 1. 最直观的相加 使用 + 对

  • python中必会的四大高级数据类型(字符,元组,列表,字典)

    一. 字符串 生活中我们经常坐大巴车,每个座位一个编号,一个位置对应一个下标. 字符串中也有下标,要取出字符串中的部分数据,可以用下标取. python中使用切片来截取字符串其中的一段内容,切片截取的内容不包含结束下标对应的数据. 切片使用语法:[起始下标:结束下标:步长] ,步长指的是隔几个下标获取一个字符. 注意:下标会越界,切片不会 常用函数 练习: Test='rodma ' print(type(Test)) print('Test的一个字符串%s'%Test[0])#跟数组差不多 #

随机推荐