linux创建线程之pthread_create的具体使用

pthread_create函数

函数简介

  pthread_create是UNIX环境创建线程函数

头文件

  #include<pthread.h>

函数声明

  int pthread_create(pthread_t *restrict tidp,const pthread_attr_t *restrict_attr,void*(*start_rtn)(void*),void *restrict arg);

返回值

  若成功则返回0,否则返回出错编号

参数

  第一个参数为指向线程标识符的指针。

  第二个参数用来设置线程属性。

  第三个参数是线程运行函数的地址。

  最后一个参数是运行函数的参数。

注意

  在编译时注意加上-lpthread参数,以调用静态链接库。因为pthread并非Linux系统的默认库。

pthread_join函数

函数简介

  函数pthread_join用来等待一个线程的结束。

函数原型为:

  extern int pthread_join __P (pthread_t __th, void **__thread_return);

参数:

  第一个参数为被等待的线程标识符

  第二个参数为一个用户定义的指针,它可以用来存储被等待线程的返回值。

注意

这个函数是一个线程阻塞的函数,调用它的函数将一直等待到被等待的线程结束为止,当函数返回时,被等待线程的资源被收回。如果执行成功,将返回0,如果失败则返回一个错误号。

例子:

#include<stdio.h>
#include<stdlib.h>
#include<pthread.h>

/* 声明结构体 */
struct member
{
  int num;
  char *name;
};

/* 定义线程pthread */
static void * pthread(void *arg)
{
  struct member *temp;

  /* 线程pthread开始运行 */
  printf("pthread start!\n");

  /* 令主线程继续执行 */
  sleep(2);

  /* 打印传入参数 */
  temp = (struct member *)arg;
  printf("member->num:%d\n",temp->num);
  printf("member->name:%s\n",temp->name);

  return NULL;
}

/* main函数 */
int main(int agrc,char* argv[])
{
  pthread_t tidp;
  struct member *b;

  /* 为结构体变量b赋值 */
  b = (struct member *)malloc(sizeof(struct member));
  b->num=1;
  b->name="mlq";

  /* 创建线程pthread */
  if ((pthread_create(&tidp, NULL, pthread, (void*)b)) == -1)
  {
    printf("create error!\n");
    return 1;
  }

  /* 令线程pthread先运行 */
  sleep(1);

  /* 线程pthread睡眠2s,此时main可以先执行 */
  printf("mian continue!\n");

  /* 等待线程pthread释放 */
  if (pthread_join(tidp, NULL))
  {
    printf("thread is not exit...\n");
    return -2;
  }

  return 0;
}

编译与执行结果

编译与执行结果如下图所示,可以看到主线程main和线程pthread交替执行。也就是说是当我们创建了线程pthread之后,两个线程都在执行,证明创建成功。另外,可以看到创建线程pthread时候,传入的参数被正确打印。

到此这篇关于linux创建线程之pthread_create的具体使用的文章就介绍到这了,更多相关linux pthread_create内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 基于pthread_create,readlink,getpid等函数的学习与总结

    pthread_create是UNIX环境创建线程函数     具体格式:   #include<pthread.h>   int pthread_create(pthread_t *restrict tidp,const pthread_attr_t *restrict attr,void*(*start_rtn)(void*),void *restrict arg);   返回值:若成功则返回0,否则返回出错编号   返回成功时,由tidp指向的内存单元被设置为新创建线程的线程ID.att

  • linux创建线程之pthread_create的具体使用

    pthread_create函数 函数简介 pthread_create是UNIX环境创建线程函数 头文件 #include<pthread.h> 函数声明 int pthread_create(pthread_t *restrict tidp,const pthread_attr_t *restrict_attr,void*(*start_rtn)(void*),void *restrict arg); 返回值 若成功则返回0,否则返回出错编号 参数 第一个参数为指向线程标识符的指针. 第二

  • Linux网络编程之UDP Socket程序示例

    在网络传输协议中,TCP协议提供的是一种可靠的,复杂的,面向连接的数据流(SOCK_STREAM)传输服务,它通过三段式握手过程建立连接.TCP有一种"重传确认"机制,即接收端收到数据后要发出一个肯定确认的信号,发送端如果收到接收端肯定确认的信号,就会继续发送其他的数据,如果没有,它就会重新发送. 相对而言,UDP协议则是一种无连接的,不可靠的数据报(SOCK_DGRAM)传输服务.使用UDP套接口不用建立连接,服务端在调用socket()生成一个套接字并调用bind()绑定端口后就可

  • Java线程之join_动力节点Java学院整理

    join()介绍 join() 定义在Thread.java中. join() 的作用:让"主线程"等待"子线程"结束之后才能继续运行.这句话可能有点晦涩,我们还是通过例子去理解: // 主线程 public class Father extends Thread { public void run() { Son s = new Son(); s.start(); s.join(); ... } } // 子线程 public class Son extends

  • Java多线程之volatile关键字及内存屏障实例解析

    前面一篇文章在介绍Java内存模型的三大特性(原子性.可见性.有序性)时,在可见性和有序性中都提到了volatile关键字,那这篇文章就来介绍volatile关键字的内存语义以及实现其特性的内存屏障. volatile是JVM提供的一种最轻量级的同步机制,因为Java内存模型为volatile定义特殊的访问规则,使其可以实现Java内存模型中的两大特性:可见性和有序性.正因为volatile关键字具有这两大特性,所以我们可以使用volatile关键字解决多线程中的某些同步问题. volatile

  • java多线程之Future和FutureTask使用实例

    Executor框架使用Runnable 作为其基本的任务表示形式.Runnable是一种有局限性的抽象,然后可以写入日志,或者共享的数据结构,但是他不能返回一个值. 许多任务实际上都是存在延迟计算的:执行数据库查询,从网络上获取资源,或者某个复杂耗时的计算.对于这种任务,Callable是一个更好的抽象,他能返回一个值,并可能抛出一个异常.Future表示一个任务的周期,并提供了相应的方法来判断是否已经完成或者取消,以及获取任务的结果和取消任务. public interface Callab

  • Python 多线程之threading 模块的使用

    简介 Python 通过 _thread 和 threading 模块提供了对多线程的支持,threading 模块兼具了 _thread 模块的现有功能,又扩展了一些新的功能,具有十分丰富的线程操作功能 创建线程 使用 threading 模块创建线程通常有两种方式: 1)使用 threading 模块中 Thread 类的构造器创建线程,即直接对类 threading.Thread 进行实例化,并调用实例化对象的 start 方法创建线程: 2)继承 threading 模块中的 Threa

  • Java多线程之FutureTask的介绍及使用

    一.FutureTask的理解 FutureTask属于java.util.concurrent 包:FutureTask表示可取消的异步计算.FutureTask类提供了一个Future的基本实现 ,具有启动和取消计算的方法,查询计算是否完整,并检索计算结果.结果只能在计算完成后才能检索; 如果计算尚未完成,则get方法将阻止. 一旦计算完成,则无法重新启动或取消计算(除非使用runAndReset()调用计算 ). 二.FutureTask类图 从上面的FutureTask类图中可以看出,F

  • java多线程之Balking模式介绍

    Balk有拒绝,阻碍的意思.如果现在不适合执行这个操作,或者没必要执行这个操作,就停止处理,直接返回.这就是Balking模式. Balking 模式可以和Guarded Suspension 模式对比,都存在守护条件.而在Balking模式中,如果守护条件不成立就立即中断处理,而Guarded Suspension 模式则是一直等待至可以运行. 创建4个类 名字 说明 Data 表示可以修改并保存的数据的类 SaverThread 定期保存数据内容的类 ChangerThread 修改并保存数

  • C#多线程之Parallel类的用法

    Parallel类是对线程的一个抽象.该类位于System.Threading.Tasks名称空间中,提供了数据和任务并行性. Paraller类定义了数据并行地For和ForEach的静态方法,以及任务并行的Invoke的静态方法.Parallel.For()和Parallel.ForEach()方法在每次迭代中调用相同的代码,Paraller.Invoke()允许调用不同的方法. 1.Parallel.For Parallel.For()方法类似C#语法的for循环语句,多次执行一个任务.但

  • java多线程之CyclicBarrier的使用方法

    java多线程之CyclicBarrier的使用方法 public class CyclicBarrierTest { public static void main(String[] args) { ExecutorService service = Executors.newCachedThreadPool(); final CyclicBarrier cb = new CyclicBarrier(3); for(int i=0;i<3;i++){ Runnable runnable = n

随机推荐