Python列表推导式实现代码实例

列表推倒式 [结果 for 变量 in 可迭代对象 if 筛选]

字典推倒式 {结果 for 变量 in 可迭代对象 if 筛选} 结果 => key:value

集合推倒式 {结果 for 变量 in 可迭代对象 if 筛选} 结果 => key 自带去重功能

列表推导式的执行顺序:各语句之间是嵌套关系,左边第二个语句是最外层,依次往右进一层,左边第一条语句是最后一层

生成一个存放1-100中个位数为3的数据列表

普通写法

#生成一个存放1-100中个位数为3的数据列表
# 普通写法
list =[]
for i in range(1,101):
  if i % 10 == 3:
    list.append(i)
print(list)
#列表推导
list1=[i for i in range(1,101) if i % 10==3]
print(list1)

利用列表推到是将 列表中的整数提取出来[True, 33, ll", "kk", 44, 34, 0]

#利用列表推到是将 列表中的整数提取出来[True, 17, "hello", "bye", 98, 34, 21]
values =[True, 33, "ll", "kk", 44, 34, 0]
#type()校验数据类型
nums =[i for i in values if type(i) == int]
print(nums)
# 字典推导式:把字典中的key:value互换, {"b":"a","d":"c"}
dic = {"a":"b", "c":"d"}
new_dic = {dic[key]:key for key in dic} # key值是里面的 key = a,key = c
print(new_dic) # key = a,key = c dic[key] = b, d

lst1 = ["唐人街探案","Q","5颗星","悬疑"]
lst2 = ["电影", "第一", "评分", "类型"]
dic = {lst2[i]:lst1[i] for i in range(len(lst1))}
print(dic)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python学习小技巧之列表项的推导式与过滤操作

    本文介绍的是关于Python中列表项的推导式与过滤操作的相关内容,分享出来供大家参考学习,下面来一起看看吧: 典型代码1: data_list = [1, 2, 3, 4, 0, -1, -2, 6, 8, -9] data_list_copy = [item for item in data_list] print(data_list) print(data_list_copy) 输出1: [1, 2, 3, 4, 0, -1, -2, 6, 8, -9] [1, 2, 3, 4, 0, -1

  • Python列表推导式的使用方法

    1.列表推导式书写形式: [表达式 for 变量 in 列表]    或者  [表达式 for 变量 in 列表 if 条件] 2.举例说明: 复制代码 代码如下: #!/usr/bin/python# -*- coding: utf-8 -*- li = [1,2,3,4,5,6,7,8,9]print [x**2 for x in li] print [x**2 for x in li if x>5] print dict([(x,x*10) for x in li]) print  [ (

  • 基于Python列表解析(列表推导式)

    列表解析--用来动态地创建列表 [expr for iter_var in iterable if cond_expr] 例子一: map(lambda x: x**2, range(6)) [0, 1, 4, 9, 16, 25] [x**2 for x in range(6)] [0, 1, 4, 9, 16, 25] 列表解析式可以取代内建的map()函数以及lambda,而且++效率更高++. 例子二: seq = [11, 10, 9, 8, 7, 6] filter(lambda x

  • python 列表推导式使用详解

    所谓的列表推导式,就是指的轻量级循环创建列表. 基本使用方式 # 创建一个0-10的列表 a = [x for x in range(11)] print(a) """ 输出结果: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] """ 上面的列表推导式等价于下面,只是代码非常简化. a = [] for x in range(10): a.append(x) 在循环的过程中使用if # 创建一个1-10之间偶数的列表 a = [x

  • Python推导式简单示例【列表推导式、字典推导式与集合推导式】

    本文实例讲述了Python推导式.分享给大家供大家参考,具体如下: 1. 列表推导式 >>> li = [1,2,3,4,5,6] # 求元素的平方 >>> li_a = [x**2 for x in li ] >>> li_a [1, 4, 9, 16, 25, 36] # 提取偶数值 >>> li_b = [x for x in li if x%2==0] >>> li_b [2, 4, 6] # 将多维数组转换

  • 简单了解python 生成器 列表推导式 生成器表达式

    生成器就是自己用python代码写的迭代器,生成器的本质就是迭代器. 通过以下两种方式构建一个生成器: 1.通过生成器函数 2.生成器表达式 生成器函数: 函数 def func1(x): x += 1 return x print(func1(5)) 生成器函数 def func1(x): x += 1 yield x g_obj = func1(5) print(g_obj.__next__()) 一个next对应一个yield. yield VS return return 结束函数,给函

  • Python学习笔记之列表推导式实例分析

    本文实例讲述了Python学习笔记之列表推导式.分享给大家供大家参考,具体如下: 列表推导式 列表推导式可以快速简练地创建列表 之前的复杂写法: capitalized_cities = [] for city in cities: capitalized_cities.append(city.title()) 简化后的写法: capitalized_cities = [city.title() for city in cities] 由此可见:借助列表推导式,我们可以使用 for 循环用一步创

  • Python列表推导式与生成器用法分析

    本文实例讲述了Python列表推导式与生成器用法.分享给大家供大家参考,具体如下: 1. 先看两个列表推导式 def t1(): func1 = [lambda x: x*i for i in range(10)] result1 = [f1(2) for f1 in func1] print result1 def t2(): func2 = [lambda x, i=i: x*i for i in range(10)] result2 = [f2(2) for f2 in func2] pr

  • Python列表推导式、字典推导式与集合推导式用法实例分析

    本文实例讲述了Python列表推导式.字典推导式与集合推导式用法.分享给大家供大家参考,具体如下: 推导式comprehensions(又称解析式),是Python的一种独有特性.推导式是可以从一个数据序列构建另一个新的数据序列的结构体. 共有三种推导,在Python2和3中都有支持: 列表(list)推导式 字典(dict)推导式 集合(set)推导式 一.列表推导式 1.使用[]生成list 基本格式 variable = [out_exp_res for out_exp in input_

  • Python列表推导式与生成器表达式用法示例

    本文实例讲述了Python列表推导式与生成器表达式用法.分享给大家供大家参考,具体如下: 和列表一样,列表推导式也采用方括号[]表示,并且用到了一个简写版的for循环,第一部分是一个生成结果列表元素的表达式,第二部分是一个输入表达式上的循环.阅读理解列表表达式的推荐做法是先从里面的for循环开始,向右查看是否有if条件,然后将推导式开始的那个表达式映射到每一个匹配的元素上去. >>> even_numbers = [x for x in range(10) if x%2 == 0] &g

随机推荐