Python OpenCV视频截取并保存实现代码

这篇文章主要介绍了Python OpenCV视频截取并保存实现代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

在图像处理之前,我们需要对拿到手的数据进行筛选,对于视频,我们需要从中截取我们需要的一段或几段

整体思路比较简单,通过设定截取视频的起止时间(帧数),可以将该时间段内的图像保存为新的视频

直接上代码

"""
【函数名称】 截取视频
【参数】 输入参数 视频文件名称
【详细介绍】 输入不同时间段 进行截取拼接
【创建日期】 20191128 by wangxioabei
【修改日期】 NOTE.1:
"""
def CutVideoFromFile(video_file_name,windows_name = 'videoShowing'):
  cap = cv2.VideoCapture(video_file_name) # 打开视频文件
  # 需要明确视频保存的格式
  fourcc = cv2.VideoWriter_fourcc(*'XVID')
  fps = cap.get(cv2.CAP_PROP_FPS)
  print('帧率:%d'%fps)
  size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
  out = cv2.VideoWriter('BeltTear.avi',fourcc,fps, size)
  SaveTime = [[38*60+38,39*60+59],[42*60+54,44*60+11],[47*60+8,48*60+24],[51*60+20,52*60+39]]
  print(SaveTime[0][0])
  now_frame = 0
  while (cap.isOpened()):
    ret, frame = cap.read() # 捕获一帧图像
    img_h, img_w, img_ch = frame.shape
    # print(frame.shape)
    if ret:
      # 【1】 不能直接将灰度或二值化的图片保存成视频,需要转换成彩色
      if img_ch==1:
        frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2BGR)
      # cv2.imshow(windows_name, frame)
      for i in range(len(SaveTime)):
        if now_frame > SaveTime[i][0]*fps and now_frame < SaveTime[i][1]*fps:
          out.write(frame)
          print(now_frame)
      now_frame += 1
      if now_frame > SaveTime[2][1]*fps:
        break;
      k = cv2.waitKey(1) & 0xFF
      if k == 27:
        break
      # cv2.waitKey(25)
    else:
      break
  cap.release()
  out.release()
  cv2.destroyAllWindows()

其中SaveTime列表 中嵌套的列表为截取视频的时间s,也可以将其当做参数传入,即可封装整个函数。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python使用opencv按一定间隔截取视频帧

    关于opencv OpenCV 是 Intel 开源计算机视觉库 (Computer Version) .它由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很多通用算法. OpenCV 拥有包括 300 多个 C 函数的跨平台的中.高层 API .它不依赖于其它的外部库 -- 尽管也可以使用某些外部库. OpenCV 对非商业应用和商业应用都是免费 的.同时 OpenCV 提供了对硬件的访问,可以直接访问摄像头,并且 opencv 还提供了一个简单的 GUI(graph

  • 使用Python opencv实现视频与图片的相互转换

    因为最近要经常转换数据集进行实验,因此记录一下. 1.视频转图片 即为将视频解析为一帧一帧的图片: import cv2 vc=cv2.VideoCapture("/home/hqd/PycharmProjects/1/1/19.MOV") c=1 if vc.isOpened(): rval,frame=vc.read() else: rval=False while rval: rval,frame=vc.read() cv2.imwrite('/home/hqd/PycharmP

  • Python+OpenCV+pyQt5录制双目摄像头视频的实例

    起因 说起来录制视频,我们可能有很多的软件,但是比较坑的是,好像很少的软件支持能够同时录制两个摄像头的视频,于是我们用python自己写一个.要是OpenCV+python.貌似很简单就能OK的事情,但是,我们的项目不是一般要展示给老师看嘛.谁愿意看一个没有界面的录制过程是吧~,最后会附上源代码~ 依赖的包 在这里,我直接把import的包写出来了各位可以进行对号入座,然后就能知道需要安装哪个包啦! import cv2 import numpy as np from PyQt5.QtWidge

  • python+opencv打开摄像头,保存视频、拍照功能的实现方法

    以下代码是保存视频 # coding:utf-8 import cv2 import sys reload(sys) sys.setdefaultencoding('utf8') cap = cv2.VideoCapture(0) cap.set(3,640) cap.set(4,480) cap.set(1, 10.0) #此处fourcc的在MAC上有效,如果视频保存为空,那么可以改一下这个参数试试, 也可以是-1 fourcc = cv2.cv.CV_FOURCC('m', 'p', '4

  • python opencv读mp4视频的实例

    如下所示: #获得视频的格式 videoCapture = cv2.VideoCapture('/home/lw/3661.mp4') #获得码率及尺寸 fps = videoCapture.get(cv2.CAP_PROP_FPS) size = (int(videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(videoCapture.get(cv2.CAP_PROP_FRAME_HEIGHT))) fNUMS = videoCapture.get(

  • Python OpenCV获取视频的方法

    之前有文章,使用Android平台的OpenCV接入了视频,控制的目标是手机的摄像头,这是OpenCV的好处,使用OpenCV可以使用跨平台的接口实现相同的功能,减少了平台间移植的困难.正如本文后面,将使用类似的接口,从笔记本的摄像头获取视频,所以,尝试本文代码需要有一台有摄像头的电脑. 不过,需要说明的的是,OpenCV的强项在于图像相关的处理,而不是视频的编解码,所以,不要使用OpenCV做多余的事情,我们使用OpenCV接入视频或者图片的目的,是为了对视频或图片进行处理. 关于Python

  • 对Python+opencv将图片生成视频的实例详解

    如下所示: import cv2 fps = 16 size = (width,height) videowriter = cv2.VideoWriter("a.avi",cv2.VideoWriter_fourcc('M','J','P','G'),fps,size) for i in range(1,200): img = cv2.imread('%d'.jpg % i) videowriter.write(img) 以上这篇对Python+opencv将图片生成视频的实例详解就是

  • python opencv 读取本地视频文件 修改ffmpeg的方法

    Python + opencv 读取视频的三种情况: 情况一:通过摄像头采集视频 情况二:通过本地视频文件获取视频 情况三:通过摄像头录制视频,再读取录制的视频 摄像头采集.本地视频文件的读取.写视频文件,网上都有代码. 我发现情况一和情况三都没有问题,大家注意读取自己通过摄像头录制的视频文件是没有问题的.但读取其他视频都会发现帧率为0(如果你获取视频的帧率并打印出来的话),并且退出读取.这时候读取是不成功的. 进去正题:如何解决读取视频失败的情况.这个问题很普遍,以至在官方教程的程序下面都提示

  • Python基于OpenCV实现视频的人脸检测

    本文实例为大家分享了基于OpenCV实现视频的人脸检测具体代码,供大家参考,具体内容如下 前提条件 1.摄像头 2.已安装Python和OpenCV3 代码 import cv2 import sys import logging as log import datetime as dt from time import sleep cascPath = "haarcascade_frontalface_default.xml" faceCascade = cv2.CascadeCla

  • Python OpenCV视频截取并保存实现代码

    这篇文章主要介绍了Python OpenCV视频截取并保存实现代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在图像处理之前,我们需要对拿到手的数据进行筛选,对于视频,我们需要从中截取我们需要的一段或几段 整体思路比较简单,通过设定截取视频的起止时间(帧数),可以将该时间段内的图像保存为新的视频 直接上代码 """ [函数名称] 截取视频 [参数] 输入参数 视频文件名称 [详细介绍] 输入不同时间段 进行截取拼接 [创

  • 详解Python+opencv裁剪/截取图片的几种方式

    前言 在计算机视觉任务中,如图像分类,图像数据集必不可少.自己采集的图片往往存在很多噪声或无用信息会影响模型训练.因此,需要对图片进行裁剪处理,以防止图片边缘无用信息对模型造成影响.本文介绍几种图片裁剪的方式,供大家参考. 一.手动单张裁剪/截取 selectROI:选择感兴趣区域,边界框框选x,y,w,h selectROI(windowName, img, showCrosshair=None, fromCenter=None): . 参数windowName:选择的区域被显示在的窗口的名字

  • Python OpenCV视频文件相关操作教程

    目录 一.从文件中读取视频并播放 1.创建读取视频的对象 2.获取视频某些属性 3.修改视频属性信息 4.判断图像是否读取成功 5.获取视频的一帧图像 6.释放图像 二.视频文件的保存 1.在OpenCV中保存视频使用的是VedioWriter对象,创建视频写入对象 2.设置视频的编解码器 3.利用cap.read()获取视频中的每一帧图像,使用out.write()将某一帧图像写入视频中 4.使用cap.release()和out.release()释放资源 三.视频文件目标追踪 1.mean

  • python+opencv实现的简单人脸识别代码示例

    # 源码如下: #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv def detect_object(image): '''检测图片,获取人脸在图片中的坐标''' grayscale = cv.CreateImage((image.width, image.height), 8, 1) cv.CvtColor(image, grayscale, cv.CV_BGR2GR

  • Python实现视频画质增强的示例代码

    目录 前言 原理 实现步骤 拆分 处理 合成 效果 总结 前言 前面通过文章 几行代码,实现Python捕获.播放和保存摄像头视频!给大家介绍了如何读取.播放和保存视频,后面又通过文章 Python美图技术也就几行代码!给大家介绍了如何对图像的亮度.对比度.色度或者锐度进行调整,从而达到基本的图像处理操作. 其实,那两篇文章都是铺垫,都是为了给大家介绍如何对视频进行画质增强.本文将结合前面两篇文章的内容,来讲讲如何对视频画质进行增强. 想要直接看效果的,可以拉到文末. 原理 不知道大家小时候有没

  • Python+Opencv实现数字识别的示例代码

    一.什么是数字识别?   所谓的数字识别,就是使用算法自动识别出图片中的数字.具体的效果如下图所示: 上图展示了算法的处理效果,算法能够自动的识别到LCD屏幕上面的数字,这在现实场景中具有很大的实际应用价值.下面我们将对它的实现细节进行详细解析. 二.如何实现数字识别?   对于数字识别这个任务而言,它并不是一个新的研究方向,很久之前就有很多的学者们在关注这个问题,并提出了一些可行的解决方案,本小节我们将对这些方案进行简单的总结. 方案一:使用现成的OCR技术. OCR,即文字识别,它是一个比较

  • Python自动爬取图片并保存实例代码

    目录 一.准备工作 二.代码实现 三.总结 一.准备工作 用python来实现对百度图片的爬取并保存,以情绪图片为例,百度搜索可得到下图所示 f12打开源码 在此处可以看到这次我们要爬取的图片的基本信息是在img - scr中 二.代码实现 这次的爬取主要用了如下的第三方库 import re import time import requests from bs4 import BeautifulSoup import os 简单构思可以分为三个小部分 1.获取网页内容 2.解析网页 3.保存

  • Python+OpenCV实现角度测量的示例代码

    本文介绍如何使用python语言实现角度测量,程序包括鼠标选点.直线斜率计算.角度计算三个子程序和一个主程序.最终实现效果:在图片上用鼠标确认三点,程序将会显示由此三点确定的角度,如下图所示. 1.鼠标选点 # -*- coding: utf-8 -*- import cv2 path = "picture_mqa\\angle_measure.bmp" img = cv2.imread(path) pointsList = [] def mousePoints(event,x,y,f

  • Python Opencv中获取卷积核的实现代码

    目录 1.cv2.getStructuringElement(shape,ksize,anchor=(-1,-1)) 2.函数讲解 3.代码实战 1.cv2.getStructuringElement(shape,ksize,anchor=(-1,-1)) 该函数构造并返回可进一步传递给createMorphologyFilter().Correase().Explate()或morphologyEx()的结构元素.但您也可以自己构造任意的二进制掩码,并将其用作结构元素. 2.函数讲解 getS

  • python+opencv实现车牌定位功能(实例代码)

    写在前面 HIT大三上学期视听觉信号处理课程中视觉部分的实验三,经过和学长们实验的对比发现每一级实验要求都不一样,因此这里标明了是2019年秋季学期的视觉实验三. 由于时间紧张,代码没有进行任何优化,实验算法仅供参考. 实验要求 对给定的车牌进行车牌识别 实验代码 代码首先贴在这里,仅供参考 源代码 实验代码如下: import cv2 import numpy as np def lpr(filename): img = cv2.imread(filename) # 预处理,包括灰度处理,高斯

随机推荐