关于python tushare Tkinter构建的简单股票可视化查询系统(Beta v0.13)

前言:

这次比上次新添了公司信息内容跟一个股票基本面指标选项卡,股票基本面指标选项卡用的是matplotlib写的,采用plt.subplot2grid()子图写的,没写主图,在此期间遇到了无法标题中文话,一写就乱码,用过网上很多解决方法,目前也是无解,先记录,后面有时间再解决,如果你有解决方法请务必赐教,实在这个问题卡了我一天多了,如果单单是只用matplotlib输出图形,乱码问题网上的很多方法也是能够解决,我也不清楚究竟是我写的代码哪里跟中文显示冲突了,一时间代码也开始有点乱了,后面估计会越写越乱,等再写一两个功能抽个时间简洁下代码。更新的代码如下:

import pandas as pd
import tushare as ts
import mplfinance as mpf
import tkinter.tix as tix
from tkinter import ttk
import tkinter.font as tf
from tkinter.constants import *
import matplotlib.pyplot as plt
import matplotlib.dates as mdates  #處理日期
from matplotlib.backends.backend_tkagg import (FigureCanvasTkAgg, NavigationToolbar2Tk)

pro = ts.pro_api('要到tushare官网注册个账户然后将token复制到这里,可以的话请帮个忙用文章末我分享的链接注册,谢谢')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# pd.set_option()就是pycharm输出控制显示的设置
pd.set_option('expand_frame_repr', False) # True就是可以换行显示。设置成False的时候不允许换行
pd.set_option('display.max_columns', None) # 显示所有列
# pd.set_option('display.max_rows', None) # 显示所有行
pd.set_option('colheader_justify', 'centre') # 显示居中

root = tix.Tk() # 创建主窗口
screenWidth = root.winfo_screenwidth() # 获取屏幕宽的分辨率
screenHeight = root.winfo_screenheight()
x, y = int(screenWidth / 4), int(screenHeight / 4) # 初始运行窗口屏幕坐标(x, y),设置成在左上角显示
width = int(screenWidth / 2) # 初始化窗口是显示器分辨率的二分之一
height = int(screenHeight / 2)
root.geometry('{}x{}+{}+{}'.format(width, height, x, y)) # 窗口的大小跟初始运行位置
root.title('Wilbur量化复盘分析软件')
# root.resizable(0, 0) # 固定窗口宽跟高,不能调整大小,无法最大窗口化
root.iconbitmap('ZHY.ico') # 窗口左上角图标设置,需要自己放张图标为icon格式的图片文件在项目文件目录下

# 首先创建主框架
main_frame = tix.Frame(root, width=screenWidth, height=screenHeight,
            relief=tix.SUNKEN, bg='#353535', bd=5, borderwidth=4)
main_frame.pack(fill=BOTH, expand=0)

# 在主框架下创建股票代码输入子框架
code_frame = tix.Frame(main_frame, borderwidth=1, bg='#353535')
code_frame.pack()
# 创建标签‘股票代码'
stock_label = tix.Label(code_frame, text='股票代码', bd=1)
stock_label.pack(side=LEFT)
# 创建股票代码输入框
input_code_var = tix.StringVar()
code_widget = tix.Entry(code_frame, textvariable=input_code_var, borderwidth=1, justify=CENTER)
# input_code_get = input_code_var.set(input_code_var.get()) # 获取输入的新值
code_widget.pack(side=LEFT, padx=4)

# 在主框架下创建股票日期输入框子框架
input_date_frame = tix.Frame(main_frame, borderwidth=1, bg='#353535')
input_date_frame.pack()
# 创建标签‘开始日期'
date_start_label = tix.Label(input_date_frame, text='开始日期', bd=1)
date_start_label.pack(side=LEFT)
# 创建开始日期代码输入框
input_startdate_var = tix.StringVar()
startdate_widget = tix.Entry(input_date_frame, textvariable=input_startdate_var, borderwidth=1, justify=CENTER)
input_startdate_get = input_startdate_var.set(input_startdate_var.get()) # 获取输入的新值
startdate_widget.pack(side=LEFT, padx=4)
# 创建标签‘结束日期'
date_end_label = tix.Label(input_date_frame, text='结束日期', bd=1)
date_end_label.pack(side=LEFT)
# 创建结束日期代码输入框
input_enddate_var = tix.StringVar()
enddate_widget = tix.Entry(input_date_frame, textvariable=input_enddate_var, borderwidth=1, justify=CENTER)
input_enddate_get = input_enddate_var.set(input_enddate_var.get()) # 获取输入的新值
enddate_widget.pack(side=LEFT, padx=4)

# 以下函数作用是省略输入代码后缀.sz .sh
def code_name_transform(get_stockcode): # 输入的数字股票代码转换成字符串股票代码
  str_stockcode = str(get_stockcode)
  str_stockcode = str_stockcode.strip() # 删除前后空格字符
  if 6 > len(str_stockcode) > 0:
    str_stockcode = str_stockcode.zfill(6) + '.SZ' # zfill()函数返回指定长度的字符串,原字符串右对齐,前面填充0
  if len(str_stockcode) == 6:
    if str_stockcode[0:1] == '0':
      str_stockcode = str_stockcode + '.SZ'
    if str_stockcode[0:1] == '3':
      str_stockcode = str_stockcode + '.SZ'
    if str_stockcode[0:1] == '6':
      str_stockcode = str_stockcode + '.SH'
  return str_stockcode

tabControl = ttk.Notebook(root) # 创建Notebook
stock_graphics_daily = tix.Frame(root, borderwidth=1, bg='#353535', relief=tix.RAISED) # 增加新选项卡日K线图
# stock_graphics_daily.pack(expand=1, fill=tk.BOTH, anchor=tk.CENTER)
stock_graphics_daily_basic = tix.Frame(root, borderwidth=1, bg='#353535', relief=tix.RAISED) # 增加新选项卡基本面指标
stock_graphics_week = tix.Frame(root, borderwidth=1, bg='#353535', relief=tix.RAISED)
stock_graphics_month = tix.Frame(root, borderwidth=1, bg='#353535', relief=tix.RAISED)
company_information = tix.Frame(root, borderwidth=1, bg='#353535', relief=tix.RAISED)

tabControl.add(stock_graphics_daily, text='日K线图') # 把新选项卡日K线框架增加到Notebook
tabControl.add(stock_graphics_daily_basic, text='基本面指标')
tabControl.add(stock_graphics_week, text='周K线图')
tabControl.add(stock_graphics_month, text='月K线图')
tabControl.add(company_information, text='公司信息')
tabControl.pack(expand=1, fill="both") # 设置选项卡布局
tabControl.select(stock_graphics_daily) # 默认选定日K线图开始

# 创建股票图形输出框架
def go():
  # 清除stock_graphics_daily框架中的控件内容,winfo_children()返回的项是一个小部件列表,
  # 以下代码作用是为每次点击查询按钮时更新图表内容,如果没有以下代码句,则每次点击查询会再生成一个图表
  for widget_daily in stock_graphics_daily.winfo_children():
    widget_daily.destroy()
  for widget_daily_basic in stock_graphics_daily_basic.winfo_children():
    widget_daily_basic.destroy()
  for widget_week in stock_graphics_week.winfo_children():
    widget_week.destroy()
  for widget_month in stock_graphics_month.winfo_children():
    widget_month.destroy()
  for widget_company_information in company_information.winfo_children():
    widget_company_information.destroy()

  stock_name = input_code_var.get()
  code_name = code_name_transform(stock_name)
  start_date = input_startdate_var.get()
  end_date = input_enddate_var.get()

  stock_data = pro.daily(ts_code=code_name, start_date=start_date, end_date=end_date)
  stock_daily_basic = pro.daily_basic(ts_code=code_name, start_date=start_date, end_date=end_date,
                    fields='close,trade_date,turnover_rate,volume_ratio,pe,pb')
  stock_week_data = pro.weekly(ts_code=code_name, start_date=start_date, end_date=end_date)
  stock_month_data = pro.monthly(ts_code=code_name, start_date=start_date, end_date=end_date)
  stock_name_change = pro.namechange(ts_code=code_name, fields='ts_code,name')
  stock_information = pro.stock_company(ts_code=code_name, fields='introduction,main_business,business_scope')

  # 日数据处理
  data = stock_data.loc[:, ['trade_date', 'open', 'close', 'high', 'low', 'vol']] # :取所有行数据,后面取date列,open列等数据
  data = data.rename(columns={'trade_date': 'Date', 'open': 'Open', 'close': 'Close', 'high': 'High', 'low': 'Low',
                'vol': 'Volume'}) # 更换列名,为后面函数变量做准备
  data.set_index('Date', inplace=True) # 设置date列为索引,覆盖原来索引,这个时候索引还是 object 类型,就是字符串类型。
  # 将object类型转化成 DateIndex 类型,pd.DatetimeIndex 是把某一列进行转换,同时把该列的数据设置为索引 index。
  data.index = pd.DatetimeIndex(data.index)
  data = data.sort_index(ascending=True) # 将时间顺序升序,符合时间序列

  # 基本面指标数据处理
  stock_daily_basic.set_index('trade_date', inplace=True) # 设置date列为索引,覆盖原来索引,这个时候索引还是 object 类型,就是字符串类型。
  # 将object类型转化成 DateIndex 类型,pd.DatetimeIndex 是把某一列进行转换,同时把该列的数据设置为索引 index。
  stock_daily_basic.index = pd.DatetimeIndex(stock_daily_basic.index)
  stock_daily_basic = stock_daily_basic.sort_index(ascending=True) # 将时间顺序升序,符合时间序列
  print(stock_daily_basic)

  # 周数据处理
  week_data = stock_week_data.loc[:, ['trade_date', 'open', 'close', 'high', 'low', 'vol']]
  week_data = week_data.rename(columns={'trade_date': 'Date', 'open': 'Open', 'close': 'Close', 'high': 'High',
                     'low': 'Low', 'vol': 'Volume'}) # 更换列名,为后面函数变量做准备
  week_data.set_index('Date', inplace=True) # 设置date列为索引,覆盖原来索引,这个时候索引还是 object 类型,就是字符串类型。
  # 将object类型转化成 DateIndex 类型,pd.DatetimeIndex 是把某一列进行转换,同时把该列的数据设置为索引 index。
  week_data.index = pd.DatetimeIndex(week_data.index)
  week_data = week_data.sort_index(ascending=True) # 将时间顺序升序,符合时间序列

  # 月数据处理
  month_data = stock_month_data.loc[:, ['trade_date', 'open', 'close', 'high', 'low', 'vol']]
  month_data = month_data.rename(columns={'trade_date': 'Date', 'open': 'Open', 'close': 'Close', 'high': 'High',
                      'low': 'Low', 'vol': 'Volume'}) # 更换列名,为后面函数变量做准备
  month_data.set_index('Date', inplace=True) # 设置date列为索引,覆盖原来索引,这个时候索引还是 object 类型,就是字符串类型。
  # 将object类型转化成 DateIndex 类型,pd.DatetimeIndex 是把某一列进行转换,同时把该列的数据设置为索引 index。
  month_data.index = pd.DatetimeIndex(month_data.index)
  month_data = month_data.sort_index(ascending=True) # 将时间顺序升序,符合时间序列

  # 公司信息处理
  stock_company_code = stock_name_change.at[0, 'ts_code']
  stock_company_name = stock_name_change.at[0, 'name']
  stock_introduction = stock_information.at[0, 'introduction']
  stock_main_business = stock_information.at[0, 'main_business']
  stock_business_scope = stock_information.at[0, 'business_scope']

  # K线图图形输出
  daily_fig, axlist = mpf.plot(data, type='candle', mav=(5, 10, 20), volume=True,
                 show_nontrading=False, returnfig=True)
  # 注意必须按照选项卡的排列顺序渲染图形输出,假如你把matplotlib的图形放到最后,则会出现图像错位现象,不信你可以把以下的代码放到month_fig后试下
  plt_stock_daily_basic = plt.figure(facecolor='white')
  plt.suptitle('Daily Basic Indicator', size=10)

  fig_close = plt.subplot2grid((3, 2), (0, 0), colspan=2) # 创建网格子绘图,按行切分成3份,列切分成2分,位置(0,0),横向占用2列
  fig_close.set_title('Close Price')
  plt.xticks(stock_daily_basic.index, rotation=45) # 设置x轴时间显示方向,放在这跟放在最后显示效果不一样
  fig_close.plot(stock_daily_basic.index, stock_daily_basic['close'])
  plt.xlabel('Trade Day')
  plt.ylabel('Close')
  plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m')) # 設置x軸主刻度顯示格式(日期)
  plt.gca().xaxis.set_major_locator(mdates.MonthLocator(interval=1)) # 設置x軸主刻度間距

  fig_turnover_rate = plt.subplot2grid((3, 2), (1, 0)) # 创建网格子绘图,按行切分成3份,列切分成2分,位置(1,0)
  fig_turnover_rate.set_title('Turnover Rate')
  plt.xticks(stock_daily_basic.index, rotation=45) # 设置x轴时间显示方向,放在这跟放在最后显示效果不一样
  fig_turnover_rate.bar(stock_daily_basic.index, stock_daily_basic['turnover_rate'], facecolor='red')
  plt.xlabel('Trade Day')
  plt.ylabel('Turnover Rate')
  plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m')) # 設置x軸主刻度顯示格式(日期)
  plt.gca().xaxis.set_major_locator(mdates.MonthLocator(interval=2)) # 設置x軸主刻度間距

  fig_volume_ratio = plt.subplot2grid((3, 2), (2, 0)) # 创建网格子绘图,按行切分成3份,列切分成2分,位置(1,2)
  fig_volume_ratio.set_title('Volume Ratio')
  plt.xticks(stock_daily_basic.index, rotation=45) # 设置x轴时间显示方向,放在这跟放在最后显示效果不一样
  fig_volume_ratio.bar(stock_daily_basic.index, stock_daily_basic['volume_ratio'])
  plt.xlabel('Trade Day')
  plt.ylabel('Volume Ratio')
  plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%m')) # 設置x軸主刻度顯示格式(日期)
  plt.gca().xaxis.set_major_locator(mdates.MonthLocator(interval=2)) # 設置x軸主刻度間距

  fig_pe = plt.subplot2grid((3, 2), (1, 1)) # 创建网格子绘图,按行切分成3份,列切分成2分,位置在第3行,第1列
  fig_pe.set_title('PE')
  plt.xticks(stock_daily_basic.index, rotation=45) # 设置x轴时间显示方向,放在这跟放在最后显示效果不一样
  fig_pe.plot(stock_daily_basic.index, stock_daily_basic['pe'])
  plt.xlabel('Trade Day')
  plt.ylabel('PE')
  plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%m')) # 設置x軸主刻度顯示格式(日期)
  plt.gca().xaxis.set_major_locator(mdates.MonthLocator(interval=2)) # 設置x軸主刻度間距

  fig_pb = plt.subplot2grid((3, 2), (2, 1)) # 创建网格子绘图,按行切分成3份,列切分成2分,位置在第3行,第2列
  fig_pb.set_title('PB')
  plt.xticks(stock_daily_basic.index, rotation=45) # 设置x轴时间显示方向,放在这跟放在最后显示效果不一样
  fig_pb.plot(stock_daily_basic.index, stock_daily_basic['pb'])
  plt.xlabel('Trade Day')
  plt.ylabel('PB')
  plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%m')) # 設置x軸主刻度顯示格式(日期)
  plt.gca().xaxis.set_major_locator(mdates.MonthLocator(interval=2)) # 設置x軸主刻度間距
  plt_stock_daily_basic.tight_layout(h_pad=-2, w_pad=0) # 解决子图图形重叠问题

  week_fig, axlist = mpf.plot(week_data, type='candle', mav=(5, 10, 20), volume=True,
                show_nontrading=False, returnfig=True)
  month_fig, axlist = mpf.plot(month_data, type='candle', mav=(5, 10, 20), volume=True,
                 show_nontrading=False, returnfig=True)

  canvas_daily = FigureCanvasTkAgg(daily_fig, master=stock_graphics_daily) # 设置tkinter绘制区
  canvas_daily.draw()
  toolbar_daily = NavigationToolbar2Tk(canvas_daily, stock_graphics_daily)
  toolbar_daily.update() # 显示图形导航工具条
  canvas_daily._tkcanvas.pack(side=BOTTOM, fill=BOTH, expand=1)

  canvas_stock_daily_basic = FigureCanvasTkAgg(plt_stock_daily_basic, master=stock_graphics_daily_basic)
  canvas_stock_daily_basic.draw()
  toolbar_stock_daily_basic = NavigationToolbar2Tk(canvas_stock_daily_basic, stock_graphics_daily_basic)
  toolbar_stock_daily_basic.update() # 显示图形导航工具条
  canvas_stock_daily_basic._tkcanvas.pack(side=BOTTOM, fill=BOTH, expand=1)
  plt.close()

  canvas_week = FigureCanvasTkAgg(week_fig, master=stock_graphics_week) # 设置tkinter绘制区
  canvas_week.draw()
  toolbar_week = NavigationToolbar2Tk(canvas_week, stock_graphics_week)
  toolbar_week.update() # 显示图形导航工具条
  canvas_week._tkcanvas.pack(side=BOTTOM, fill=BOTH, expand=1)

  canvas_month = FigureCanvasTkAgg(month_fig, master=stock_graphics_month) # 设置tkinter绘制区
  canvas_month.draw()
  toolbar_month = NavigationToolbar2Tk(canvas_month, stock_graphics_month)
  toolbar_month.update() # 显示图形导航工具条
  canvas_month._tkcanvas.pack(side=BOTTOM, fill=BOTH, expand=1)

  company_text = tix.Text(company_information, bg='white', undo=True, wrap=tix.CHAR)

  company_text.insert(tix.INSERT, stock_company_code)
  company_text.tag_add('tag1', '1.0', '1.9')
  company_text.tag_config('tag1', foreground='red', justify=CENTER)
  company_text.insert(tix.INSERT, '\n')

  company_text.insert(tix.INSERT, stock_company_name)
  company_text.tag_add('tag2', '2.0', '2.9')
  company_text.tag_config('tag2', foreground='red', justify=CENTER)
  company_text.insert(tix.INSERT, '\n')

  company_text.insert(tix.INSERT, '  ')
  company_text.insert(tix.INSERT, '公司简介:')
  company_text.tag_add('tag3', '3.3', '3.9')
  company_text.tag_config('tag3', foreground='red', font=tf.Font(family='SimHei', size=12))
  company_text.insert(tix.INSERT, stock_introduction)
  company_text.tag_add('tag4', '3.9', 'end')
  company_text.tag_config('tag4', foreground='black', spacing1=20, spacing2=10,
              font=tf.Font(family='SimHei', size=12))
  company_text.insert(tix.INSERT, '\n')

  company_text.insert(tix.INSERT, '  ')
  company_text.insert(tix.INSERT, '主要业务及产品:')
  company_text.tag_add('tag5', '4.4', '4.12')
  company_text.tag_config('tag5', foreground='blue')
  company_text.insert(tix.INSERT, stock_main_business)
  company_text.tag_add('tag6', '4.12', 'end')
  company_text.tag_config('tag6', spacing1=20, spacing2=10,
              font=tf.Font(family='SimHei', size=12))
  company_text.insert(tix.INSERT, '\n')

  company_text.insert(tix.INSERT, '  ')
  company_text.insert(tix.INSERT, '经营范围:')
  company_text.tag_add('tag7', '5.4', '5.9')
  company_text.tag_config('tag7', foreground='#cc6600')
  company_text.insert(tix.INSERT, stock_business_scope)
  company_text.tag_add('tag8', '5.9', 'end')
  company_text.tag_config('tag8', spacing1=20, spacing2=10,
              font=tf.Font(family='SimHei', size=12))
  company_text.insert(tix.INSERT, '\n')

  company_text.pack(fill=BOTH, expand=1)

# 在主框架下创建查询按钮子框架
search_frame = tix.Frame(main_frame, borderwidth=1, bg='#353535', relief=tix.SUNKEN)
search_frame.pack()
# 创建查询按钮并设置功能
stock_find = tix.Button(search_frame, text='查询', width=5, height=1, command=go)
stock_find.pack()

root.mainloop()

效果图:


到此这篇关于python tushare Tkinter构建的简单股票可视化查询系统(Beta v0.13)的文章就介绍到这了,更多相关python tushare可视化内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python数据可视化正态分布简单分析及实现代码

    Python说来简单也简单,但是也不简单,尤其是再跟高数结合起来的时候... 正态分布(Normaldistribution),也称"常态分布",又名高斯分布(Gaussiandistribution),最早由A.棣莫弗在求二项分布的渐近公式中得到.C.F.高斯在研究测量误差时从另一个角度导出了它.P.S.拉普拉斯和高斯研究了它的性质.是一个在数学.物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力. 正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人

  • Python干货:分享Python绘制六种可视化图表

    可视化图表,有相当多种,但常见的也就下面几种,其他比较复杂一点,大都也是基于如下几种进行组合,变换出来的.对于初学者来说,很容易被这官网上众多的图表类型给吓着了,由于种类太多,几种图表的绘制方法很有可能会混淆起来. 因此,在这里,我特地总结了六种常见的基本图表类型,你可以通过对比学习,打下坚实的基础. 01. 折线图 绘制折线图,如果你数据不是很多的话,画出来的图将是曲折状态,但一旦你的数据集大起来,比如下面我们的示例,有100个点,所以我们用肉眼看到的将是一条平滑的曲线. 这里我绘制三条线,只

  • 利用Python进行数据可视化常见的9种方法!超实用!

    前言 如同艺术家们用绘画让人们更贴切的感知世界,数据可视化也能让人们更直观的传递数据所要表达的信息. 我们今天就分享一下如何用 Python 简单便捷的完成数据可视化. 其实利用 Python 可视化数据并不是很麻烦,因为 Python 中有两个专用于可视化的库 matplotlib 和 seaborn 能让我们很容易的完成任务. Matplotlib:基于Python的绘图库,提供完全的 2D 支持和部分 3D 图像支持.在跨平台和互动式环境中生成高质量数据时,matplotlib 会很有帮助

  • 关于python tushare Tkinter构建的简单股票可视化查询系统(Beta v0.13)

    前言: 这次比上次新添了公司信息内容跟一个股票基本面指标选项卡,股票基本面指标选项卡用的是matplotlib写的,采用plt.subplot2grid()子图写的,没写主图,在此期间遇到了无法标题中文话,一写就乱码,用过网上很多解决方法,目前也是无解,先记录,后面有时间再解决,如果你有解决方法请务必赐教,实在这个问题卡了我一天多了,如果单单是只用matplotlib输出图形,乱码问题网上的很多方法也是能够解决,我也不清楚究竟是我写的代码哪里跟中文显示冲突了,一时间代码也开始有点乱了,后面估计会

  • python的tkinter布局之简单的聊天窗口实现方法

    本文实例展示了一个python的tkinter布局的简单聊天窗口.分享给大家供大家参考之用.具体方法如下: 该实例展示的是一个简单的聊天窗口,可以实现下方输入聊天内容,点击发送,可以增加到上方聊天记录列表中.现在只是"单机"版. 右侧预留了空位可以放点儿其它东西.感兴趣的读者可以进一步做成socket双方互聊. 以下是功能代码部分: from Tkinter import * import datetime import time root = Tk() root.title(unic

  • python基于Tkinter库实现简单文本编辑器实例

    本文实例讲述了python基于Tkinter库实现简单文本编辑器的方法.分享给大家供大家参考.具体实现方法如下: ## {{{ http://code.activestate.com/recipes/578568/ (r1) from Tkinter import * from tkSimpleDialog import askstring from tkFileDialog import asksaveasfilename from tkMessageBox import askokcance

  • 如何利用python的tkinter实现一个简单的计算器

    做一个计算器,这是我想要达成的效果: 在按下按钮或者按下键盘的时候,第一行输入框会显示输入的内容,第二行显示框则会预览运算结果,如果发生异常,输入内容格式错误,无法计算,则显示框显示"错误". 按"="按钮或按键回车计算结果,结果显示在第一行. 1.准备工作 导入库 tkinter import tkinter as tk 2. 开始 定义两个变量: equal_is=False #定义一些变量 textchange='' equal_is 用于判断是否已经计算出结

  • Python利用multiprocessing实现最简单的分布式作业调度系统实例

    介绍 Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程分布到多台机器上.一个服务进程可以作为调度者,将任务分布到其他多个机器的多个进程中,依靠网络通信.想到这,就在想是不是可以使用此模块来实现一个简单的作业调度系统.在这之前,我们先来详细了解下python中的多进程管理包multiprocessing. multiprocessing.Process multiprocessing包是Python中的多进程管理包.它与 threading.

  • Python爬虫+tkinter界面实现历史天气查询的思路详解

    今天给大家分享用Python 爬虫+tkinter界面来实现历史天气查询. 一.实现效果 运行效果 运行效果如下: 二.基本思路 导入用到的库 import requests from lxml import etree import re import tkinter as tk from PIL import Image, ImageTk from xpinyin import Pinyin 1. 爬虫部分 目标url:https://lishi.tianqi.com/ 该网站提供了全国34

  • Python GUI Tkinter简单实现个性签名设计

    一.Tkinter的介绍和简单教程 Tkinter 是 Python 的标准 GUI 库.Python 使用 Tkinter 可以快速的创建 GUI 应用程序. 由于 Tkinter 是内置到 python 的安装包中.只要安装好 Python 之后就能 import Tkinter 库.而且 IDLE 也是用 Tkinter 编写而成.对于简单的图形界面 Tkinter 还是能应付自如. 注意:Python3.x 版本使用的库名为 tkinter,即首写字母 T 为小写. import tki

  • python使用tkinter实现简单计算器

    本文实例为大家分享了python使用tkinter实现简单计算器的具体代码,供大家参考,具体内容如下 class Counter: #引入tkinter import tkinter as tk #引入消息弹窗模块 import tkinter.messagebox as mbox #初始化Counter def __init__(self): #生成一个窗口对象 self.window = self.tk.Tk() #命名窗口对象的显示title self.window.title('计算器'

  • 使用Python中tkinter库简单gui界面制作及打包成exe的操作方法(二)

    上一篇我们写了怎么将xmind转换成想要的excel格式,这篇再讲一下用Python自带的tkinter库设计一个简单的gui界面,让我们的xmind路径,用例版本执行等都通过这个gui界面来输入,生成我们需要的excel文件. Python要生成gui,库还是比较多的比如wxpython,这个我看了下,感觉比较难懂,毕竟只是设计一个比较简单的gui界面,所以就使用了tkinter库,感觉这个还是比较方便易懂的,大家可以在这里学习tkinter库http://c.biancheng.net/py

  • python tkinter模块的简单使用

    由于一些小原因,被迫开始了tkinter一次实战演练.在此做一些记录,总结以及给自己留一些轮子哈哈哈哈哈哈 tkinter 是 Python 的一个GUI库,本次实战完全使用tkinter,不牵扯任何其他第三方库的使用. 1.任务要求 画一个具有上传病患信息以及图片功能的用户界面 2.简单设计 由于时间紧迫且只要求可视化,背后没有必要太过精细,所以简单设计思路是,利用下拉列表实现病患信息的填写,用text显示选择图片的路径. 表面上的组件包括:两个Button:选择目录 SELECT THE D

随机推荐