C++实现LeetCode(64.最小路径和)

[LeetCode] 64. Minimum Path Sum 最小路径和

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example:

Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.

这道题给了我们一个只有非负数的二维数组,让找一条从左上到右下的路径,使得路径和最小,限定了每次只能向下或者向右移动。一个常见的错误解法就是每次走右边或下边数字中较小的那个,这样的贪婪算法获得的局部最优解不一定是全局最优解,因此是不行的。实际上这道题跟之前那道 Dungeon Game 没有什么太大的区别,都需要用动态规划 Dynamic Programming 来做,这应该算是 DP 问题中比较简单的一类,我们维护一个二维的 dp 数组,其中 dp[i][j] 表示到达当前位置的最小路径和。接下来找状态转移方程,因为到达当前位置 (i, j)  只有两种情况,要么从上方 (i-1, j) 过来,要么从左边 (i, j-1) 过来,我们选择 dp 值较小的那个路径,即比较 dp[i-1][j] 和 dp[i][j-1],将其中的较小值加上当前的数字 grid[i][j],就是当前位置的 dp 值了。但是有些特殊情况要提前赋值,比如起点位置,直接赋值为 grid[0][0],还有就是第一行和第一列,其中第一行的位置只能从左边过来,第一列的位置从能从上面过来,所以这两行要提前初始化好,然后再从 (1, 1) 的位置开始更新到右下角即可,反正难度不算大,代码如下:

解法一:

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        if (grid.empty() || grid[0].empty()) return 0;
        int m = grid.size(), n = grid[0].size();
        vector<vector<int>> dp(m, vector<int>(n));
        dp[0][0] = grid[0][0];
        for (int i = 1; i < m; ++i) dp[i][0] = grid[i][0] + dp[i - 1][0];
        for (int j = 1; j < n; ++j) dp[0][j] = grid[0][j] + dp[0][j - 1];
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                dp[i][j] = grid[i][j] + min(dp[i - 1][j], dp[i][j - 1]);
            }
        }
        return dp[m - 1][n - 1];
    }
};

我们可以优化空间复杂度,可以使用一个一维的 dp 数组就可以了,初始化为整型最大值,但是 dp[0][0] 要初始化为0。之所以可以用一维数组代替之前的二维数组,是因为当前的 dp 值只跟左边和上面的 dp 值有关。这里我们并不提前更新第一行或是第一列,而是在遍历的时候判断,若j等于0时,说明是第一列,我们直接加上当前的数字,否则就要比较是左边的 dp[j-1] 小还是上面的 dp[j]  小,当是第一行的时候,dp[j] 是整型最大值,所以肯定会取到 dp[j-1] 的值,然后再加上当前位置的数字即可,参见代码如下:

解法二:

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        if (grid.empty() || grid[0].empty()) return 0;
        int m = grid.size(), n = grid[0].size();
        vector<int> dp(n, INT_MAX);
        dp[0] = 0;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (j == 0) dp[j] += grid[i][j];
                else dp[j] = grid[i][j] + min(dp[j], dp[j - 1]);
            }
        }
        return dp[n - 1];
    }
};

我们还可以进一步的优化空间,连一维数组都不用新建,而是直接使用原数组 grid 进行累加,这里的累加方式跟解法一稍有不同,没有提前对第一行和第一列进行赋值,而是放在一起判断了,当i和j同时为0时,直接跳过。否则当i等于0时,只加上左边的值,当j等于0时,只加上面的值,否则就比较左边和上面的值,加上较小的那个即可,参见代码如下:

解法三:

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        if (grid.empty() || grid[0].empty()) return 0;
        for (int i = 0; i < grid.size(); ++i) {
            for (int j = 0; j < grid[i].size(); ++j) {
                if (i == 0 && j == 0) continue;
                if (i == 0) grid[0][j] += grid[0][j - 1];
                else if (j == 0) grid[i][0] += grid[i - 1][0];
                else grid[i][j] += min(grid[i - 1][j], grid[i][j - 1]);
            }
        }
        return grid.back().back();
    }
};

下面这种写法跟上面的基本相同,只不过用了 up 和 left 两个变量来计算上面和左边的值,看起来稍稍简洁一点,参见代码如下:

解法四:

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        if (grid.empty() || grid[0].empty()) return 0;
        for (int i = 0; i < grid.size(); ++i) {
            for (int j = 0; j < grid[i].size(); ++j) {
                if (i == 0 && j == 0) continue;
                int up = (i == 0) ? INT_MAX : grid[i - 1][j];
                int left = (j == 0) ? INT_MAX : grid[i][j - 1];
                grid[i][j] += min(up, left);
            }
        }
        return grid.back().back();
    }
};

到此这篇关于C++实现LeetCode(64.最小路径和)的文章就介绍到这了,更多相关C++实现最小路径和内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++实现LeetCode(52.N皇后问题之二)

    [LeetCode] 52. N-Queens II N皇后问题之二 The n-queens puzzle is the problem of placing nqueens on an n×n chessboard such that no two queens attack each other. Given an integer n, return the number of distinct solutions to the n-queens puzzle. Example: Inpu

  • C++实现LeetCode(59.螺旋矩阵之二)

    [LeetCode] 59. Spiral Matrix II 螺旋矩阵之二 Given a positive integer n, generate a square matrix filled with elements from 1 to n2 in spiral order. Example: Input: 3 Output: [ [ 1, 2, 3 ], [ 8, 9, 4 ], [ 7, 6, 5 ] ] 此题跟之前那道 Spiral Matrix 本质上没什么区别,就相当于个类似逆

  • C++实现LeetCode(53.最大子数组)

    [LeetCode] 53. Maximum Subarray 最大子数组 Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. Example: Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation: [4,-1,2,1]

  • C++实现LeetCode(58.求末尾单词的长度)

    [LeetCode] 58. Length of Last Word 求末尾单词的长度 Given a string s consists of upper/lower-case alphabets and empty space characters ' ', return the length of last word in the string. If the last word does not exist, return 0. Note: A word is defined as a

  • C++实现LeetCode(50.求x的n次方)

    [LeetCode] 50. Pow(x, n) 求x的n次方 Implement pow(x, n), which calculates x raised to the power n(xn). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 Example 3: Input: 2.00000, -2 Output: 0.25000 Explanation

  • C++实现LeetCode(60.序列排序)

    [LeetCode] 60. Permutation Sequence 序列排序 The set [1,2,3,...,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, we get the following sequence for n = 3: "123" "132" "213" &

  • C++实现LeetCode(56.合并区间)

    [LeetCode] 56. Merge Intervals 合并区间 Given a collection of intervals, merge all overlapping intervals. Example 1: Input: [[1,3],[2,6],[8,10],[15,18]] Output: [[1,6],[8,10],[15,18]] Explanation: Since intervals [1,3] and [2,6] overlaps, merge them into

  • C++实现LeetCode(57.插入区间)

    [LeetCode] 57. Insert Interval 插入区间 Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary). You may assume that the intervals were initially sorted according to their start times. Example 1: Input: int

  • C++实现LeetCode(64.最小路径和)

    [LeetCode] 64. Minimum Path Sum 最小路径和 Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path. Note: You can only move either down or right at any point in t

  • C++实现LeetCode(113.二叉树路径之和之二)

    [LeetCode] 113. Path Sum II 二叉树路径之和之二 Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given sum. For example: Given the below binary tree and sum = 22,  5 / \ 4   8 /      / \ 11  13  4 /  \         / \ 7  

  • C++实现LeetCode(71.简化路径)

    [LeetCode] 71.Simplify Path 简化路径 Given an absolute path for a file (Unix-style), simplify it. For example, path = "/home/", => "/home" path = "/a/./b/../../c/", => "/c" click to show corner cases. Corner Cases

  • C++实现LeetCode(76.最小窗口子串)

    [LeetCode] 76. Minimum Window Substring 最小窗口子串 Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n). Example: Input: S = "ADOBECODEBANC", T = "ABC" Output: "BA

  • C++实现LeetCode(155.最小栈)

    [LeetCode] 155. Min Stack 最小栈 Design a stack that supports push, pop, top, and retrieving the minimum element in constant time. push(x) -- Push element x onto stack. pop() -- Removes the element on top of the stack. top() -- Get the top element. getM

  • JavaScript网格中的最小路径讲解

    目录 问题描述 思路分析 AC代码 问题描述 给你一个下标从 0 开始的整数矩阵 grid ,矩阵大小为 m x n ,由从 0 到 m * n - 1 的不同整数组成.你可以在此矩阵中,从一个单元格移动到 下一行 的任何其他单元格.如果你位于单元格 (x, y) ,且满足 x < m - 1 ,你可以移动到 (x + 1, 0), (x + 1, 1), ..., (x + 1, n - 1) 中的任何一个单元格.注意: 在最后一行中的单元格不能触发移动. 每次可能的移动都需要付出对应的代价,

  • C++实现LeetCode(120.三角形)

    [LeetCode] 120.Triangle 三角形 Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below. For example, given the following triangle [ [2], [3,4], [6,5,7], [4,1,8,3] ] The minimum path sum

  • C语言实现图的最短路径Floyd算法

    Floyd算法直接使用二维数组求出所有顶点到所有顶点的最短路径. D代表顶点到顶点的最短路径权值和的矩阵. P代表对应顶点的最小路径的前驱矩阵. 以下程序在DEV C++中调试运行通过. #include <stdio.h> #define INFINITY 65535 typedef int VertexType; //顶点是字符型 typedef int EdgeType; //边是整型 typedef struct //图的邻接矩阵存储结构 { VertexType vexs[9]; /

  • python递归法实现简易连连看小游戏

    问题:简单版连连看小游戏 一个分割成w*h个正方格子的矩形板上,每个正方格子可以有游戏卡,也可以没有游戏卡 两个游戏卡之间有一条路径相连需满足以下三个条件: 1.路径只包含水平和垂直的直线段 2.路径不能穿过别的游戏卡片 3.允许路径临时离开矩形板 输入要求: 第一行包括两个整数:w 和 h ; w:矩形板的宽度,h:矩形板的长度 下面h行,每行包括w个字符,表示矩形板上卡片的分布情况:'X'代表这个地方有卡片:'O'代表无卡片 之后一行包括4个整数:X1,Y1,X2,Y2(1<=X1,X2<

  • Android自定义控件实现按钮滚动选择效果

    本文实例为大家分享了Android实现按钮滚动选择效果的具体代码,供大家参考,具体内容如下 效果图 代码实现 package com.demo.ui.view; import android.annotation.TargetApi; import android.content.Context; import android.os.Build; import android.os.Handler; import android.support.v4.content.ContextCompat;

随机推荐