java中的OPT算法实现方式

目录
  • java实现OPT算法
  • FIFO LRU OPT 算法java实现

java实现OPT算法

1966年,Belady提出最佳页面替换算法(OPTimal replacement,OPT)。是操作系统存储管理中的一种全局页面替换策略 。

当要调入一页而必须淘汰旧页时,应该淘汰以后不再访问的页,或距最长时间后要访问的页面。

它所产生的缺页数最少,然而,却需要预测程序的页面引用串,这是无法预知的,不可能对程序的运行过程做出精确的断言,不过此理论算法可用作衡量各种具体算法的标准。

例子:

OPT        4    3    2    1    4    3    5    4    3    2    1    5
页1        4    4    4    4    4    4    4    4    4    2    2    2
页2            3    3    3    3    3    3    3    3    3    1    1
页3                2    1    1    1    5    5    5    5    5    5
缺页中断    x    x    x    x    v    v    x    v    v    x    x    v
共缺页中断7次

摘自百度百科

由上面的解释可知,opt算法就是将最远要访问到的页或者不再访问的页淘汰掉。

直接上代码:

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
/*
 * 说明:
 * 数据由文件读入,需要自己创建文件,然后将数据放入其中
 * 第一个数据代表内存中的页数
 * 接下来为访问次序,数据已回车分隔*/
public class OPTTest {
	public static void main(String[] args) {
		OPT opt = new OPT("E:\\java\\io_copy\\opt.txt");
		opt.algorithm();
	}
}
class OPT {
	public OPT(String filePath) {
		memoryList = new ArrayList<Integer>();
		rd = new ReadData(filePath);
		memoryMaxSize = rd.readNext();
		processList = rd.read();
	}
	ReadData rd;
	List<Integer> processList;
	List<Integer> memoryList;
	int memoryMaxSize;
	public void algorithm() {//opt算法
		int missPage = 0;
		for (int i = 0; i < processList.size(); i++) {
			int nowProcess = processList.get(i);
			if (memoryList.contains(nowProcess)) {
				;
			} else if (memoryList.size() < memoryMaxSize) {
				missPage++;
				memoryList.add(nowProcess);
			} else {
				int val = 0, index = 0;
				for (int j = 0; j < memoryList.size(); j++) {
					int now = processList.lastIndexOf(memoryList.get(j));
					if (now > index || now < i) {
						index = now < i ? Integer.MAX_VALUE : now;
						val = memoryList.get(j);
					}
				}
				memoryList.remove(memoryList.indexOf(val));
				memoryList.add(nowProcess);
				missPage++;
			}
			for (int k = 0; k < memoryList.size(); k++) {
				System.out.println(memoryList.get(k));
			}
			System.out.println("-------------");
		}
		System.out.println(missPage);
	}
}
class ReadData {//读取数据
	public ReadData(String filePath) {
		dataList = new ArrayList<Integer>();
		try {
			bfr = new BufferedReader(new FileReader(filePath));
		} catch (FileNotFoundException e) {
			// TODO 自动生成的 catch 块
			e.printStackTrace();
		}
	}
	private BufferedReader bfr = null;
	private List<Integer> dataList;
	public List<Integer> read() {
		Integer i;
		while ((i = readNext()) != -1) {
			dataList.add(i);
		}
		return dataList;
	};
	public Integer readNext() {
		try {
			String data = bfr.readLine();
			if (data == null) {
				return -1;
			}
			return Integer.parseInt(data);
		} catch (IOException e) {
			// TODO 自动生成的 catch 块
			e.printStackTrace();
		}
		return -1;
	}
}

FIFO LRU OPT 算法java实现

    public static void OPT(int len ,int page[]){
      int block[] = new int[len];
      double hit = 0;
      int key = 0;
      int m =0;
      for(int i =0;i<page.length;i++){
          if(m>=block.length){
            for(int j=0;j<block.length;j++) {
              if(block[j]==page[i]){
                  hit++;
                  System.out.println("命中");
                  key = 1;
                  break;
              }
           }
             if(key==1)
           {
               key = 0;
               continue;
           }
             else{
                 int temp[] =  new int[block.length];
                 Arrays.fill(temp, page.length);
                 for(int f=0;f<block.length;f++){
                     for(int k=i;k<page.length;k++){
                         if(block[f]==page[k]){
                           temp[f] = k;
                           break;
                         }
                 }
                }
                 int tag=0;
                 for(int u=0;u<temp.length;u++){
                   if(temp[u]>temp[tag]) tag = u;
                 }
                 System.out.println(block[tag]+"->"+page[i]);
                 block[tag]=page[i];
           }

          }
          else {
            for(int j=0;j<m;j++) {
              if(block[j]==page[i]){
                  hit++;
                  System.out.println("命中");
                  key = 1;
                  break;
              }
           }
           if(key==1)
            {
                key = 0;
                continue;
            }
            else {System.out.println("*null->"+page[i]);block[m]=page[i];m++;}
            }

    }
    System.out.println("命中率= "+hit/page.length);
  }
 public static void LRU(int len , int page[]){
        int block[] = new int[len];
        double hit = 0;
        int key = 0;
        int m=0;
        for(int i =0;i<page.length;i++){
           if(m>=block.length) {
              for(int j=0;j<block.length;j++){
                 if(block[j]==page[i]){
                    hit++;
                    System.out.println("命中");
                    int temp = block[j];
                    for(int v=j;v<block.length-1;v++) block[v]=block[v+1];
                    block[block.length-1]=temp;
                    key = 1;
                    break;
                   }
                }
                if(key==1)
                     {
                         key = 0;
                         continue;
                     }
                     else{
                           System.out.println(block[0]+"->"+page[i]);
                           for(int j=0;j<block.length-1;j++) block[j]=block[j+1];
                           block[block.length-1]=page[i];
                     }      

            }
            else {
              for(int j=0;j<m;j++) {
                if(block[j]==page[i]){
                    hit++;
                    System.out.println("命中");
                    key = 1;
                    break;
                }
             }
             if(key==1)
              {
                  key = 0;
                  continue;
              }
              else {System.out.println("*null->"+page[i]);block[m]=page[i];m++;}
              }
          }
            System.out.println("命中率= "+hit/page.length);
    }
  public static void FIFO(int len,int page[]){
          int block[] = new int[len];
          double hit=0;
          int key=0;
          int m =0;
          for(int i =0;i<page.length;i++){
              if(m>=block.length) {
                   for(int j=0;j<block.length;j++) {
                       if(block[j]==page[i]){
                           hit++;
                           System.out.println("命中");
                           key = 1;
                           break;
                       }
                    }
                    if(key==1)
                     {
                         key = 0;
                         continue;
                     }
                     else{
                           System.out.println(block[0]+"->"+page[i]);
                           for(int j=0;j<block.length-1;j++) block[j]=block[j+1];
                           block[block.length-1]=page[i];
                    }
                   }
                else {
                  for(int j=0;j<m;j++) {
                    if(block[j]==page[i]){
                        hit++;
                        System.out.println("命中");
                        key = 1;
                        break;
                    }
                 }
                 if(key==1)
                  {
                      key = 0;
                      continue;
                  }
                  else {System.out.println("*null->"+page[i]);block[m]=page[i];m++;}
                  }
          }
          System.out.println("命中率= "+hit/page.length);
    }

测试代码请自行编写 ,这里OPT算法中用了一个额外的数组用来标记接下来页面中该数据出现的位置,然后通过这个标记值判断替换哪个,是我自己想出来觉得还不错的一个方法,没有标注注释,请谅解。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Java实现的权重算法(按权重展现广告)

    基本算法描述如下: 1.每个广告增加权重 2.将所有匹配广告的权重相加sum, 3.以相加结果为随机数的种子,生成1~sum之间的随机数rd 4..接着遍历所有广告,访问顺序可以随意.将当前节点的权重值加上前面访问的各节点权重值得curWt,判断curWt >=  rd,如果条件成立则返回当前节点,如果不是则继续累加下一节点. 直到符合上面的条件,由于rd<=sum 因此一定存在curWt>=rd. 特别说明: 此算法和广告的顺序无关 import java.util.ArrayList

  • 使用Java实现5种负载均衡算法实例

    目录 前言 概念 几种负载均衡算法图例 轮询算法 加权轮询法 加权随机法 随机法 IP_Hash算法 总结 前言 负载均衡是为了解决并发情况下,多个请求访问,把请求通过提前约定好的规则转发给各个server.其中有好几个种经典的算法.在用java代码编写这几种算法之前,先来了解一下负载均衡这个概念. 概念 负载均衡是将客户端请求访问,通过提前约定好的规则转发给各个server.其中有好几个种经典的算法,下面我们用Java实现这几种算法. 几种负载均衡算法图例 主要的负载均衡算法是图中这些,在代码

  • Java常用的八种排序算法及代码实现+图解

    目录 1.冒泡排序 冒泡排序法的思路 2.冒泡排序法的代码实现 3.冒泡排序法优化 4.选择排序 5.插入排序 插入排序的思路 经典的排序算法有八种,分别为: 冒泡排序 选择排序 插入排序 归并排序 希尔排序 快速排序 堆排序 基数排序 其中冒泡排序.选择排序.插入排序称为三大基本排序. 虽然这三大基本排序算法时间复杂度都是O(n2),但是其实细细讨论之下,还是有各自的特点的. 1.冒泡排序 冒泡排序法的思路 基本思路: 假设我们需要进行升序排列 进行N轮的比较,每一轮将相邻的两个元素依次比较,

  • java中的OPT算法实现方式

    目录 java实现OPT算法 FIFO LRU OPT 算法java实现 java实现OPT算法 1966年,Belady提出最佳页面替换算法(OPTimal replacement,OPT).是操作系统存储管理中的一种全局页面替换策略 . 当要调入一页而必须淘汰旧页时,应该淘汰以后不再访问的页,或距最长时间后要访问的页面. 它所产生的缺页数最少,然而,却需要预测程序的页面引用串,这是无法预知的,不可能对程序的运行过程做出精确的断言,不过此理论算法可用作衡量各种具体算法的标准. 例子: OPT 

  • Java中BM(Boyer-Moore)算法的图解与实现

    目录 简介 基本概念 坏字符 好后缀 工作过程 坏字符 好后缀 BM算法 代码实现 最后 简介 本篇文章主要分为两个大的部分,第一部分通过图解的方式讲解BM算法,第二部分则代码实现一个简易的BM算法. 基本概念 bm是一个字符串匹配算法,有实验统计,该算法是著名kmp算法性能的3-4倍,其中有两个关键概念,坏字符和好后缀. 首先举一个例子 需要进行匹配的主串:a b c a g f a c j k a c k e a c 匹配的模式串:a c k e a c 坏字符 如下图所示,从模式串最后一个

  • 浅谈Java中的四种引用方式的区别

    强引用.软引用.弱引用.虚引用的概念 强引用(StrongReference) 强引用就是指在程序代码之中普遍存在的,比如下面这段代码中的object和str都是强引用: Object object = new Object(); String str = "hello"; 只要某个对象有强引用与之关联,JVM必定不会回收这个对象,即使在内存不足的情况下,JVM宁愿抛出OutOfMemory错误也不会回收这种对象. 比如下面这段代码: public class Main { publi

  • JAVA 中解密RSA算法JS加密实例详解

    JAVA 中解密RSA算法JS加密实例详解 有这样一个需求,前端登录的用户名密码,密码必需加密,但不可使用MD5,因为后台要检测密码的复杂度,那么在保证安全的前提下将密码传到后台呢,答案就是使用RSA非对称加密算法解决 . java代码 需要依赖 commons-codec 包 RSACoder.Java import org.apache.commons.codec.binary.Base64; import javax.crypto.Cipher; import java.security.

  • Java中的3种输入方式实现解析

    这篇文章主要介绍了Java中的3种输入方式实现解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1.从键盘读取char类型数据 char ch = (char)System.in.read(); System.in 提供的 read() 方法每次只能读取一个字节的数据,所以用的频率比较低. 2.BufferedReader 实现从键盘读取String类型数据 使用BufferedReader 对象的 readLine() 方法必须处理 jav

  • Java中动态规则的实现方式示例详解

    背景 业务系统在应用过程中,有时候要处理"经常变化"的部分,这部分需求可能是"业务规则",也可能是"不同的数据处理逻辑",这部分动态规则的问题,往往需要可配置,并对性能和实时性有一定要求. Java不是解决动态层问题的理想语言,在实践中发现主要有以下几种方式可以实现: 表达式语言(expression language) 动态语言(dynamic/script language language),如Groovy 规则引擎(rule engine

  • 浅谈在Java中JSON的多种使用方式

    1. 常用的JSON转换 JSONObject 转 JSON 字符串 JSONObject json = new JSONObject(); jsonObject.put("name", "test"); String str = JSONObject.toJSONString(json); JSON字符串转JSON String str = "{\"name\":\"test\"}"; JSONObjec

  • 浅谈java中HashMap键的比较方式

    先看一个例子 Integer integer=12344; Integer integer1=12344; 在Java中Integer 和Integer1是不相等的,但是如果再执行如下语句 map.put(integer, 1); map.put(integer1, 2); 会发现2会把1覆盖,问题来了,明明是两个不同的对象,为什么,2会把1覆盖呢? 我们看HashMap中添加键的源代码,如下 可以发现我们传进来的键交给了一个hash的成员方法区处理,这里我们看看hash方法的源码 哦,看到这里

  • C++ STL中常见的算法使用方式

    目录 什么是STL? 0. < algorithm> 是什么: 1. Non-modifying sequence operations: 1.1 find:(Find value in range) 1.2 count:(Count appearances of value in range) 1.3 equal:(Test whether the elements in two ranges are equal) 1.4 search:(Search range for subsequen

  • Java中创建对象的6种方式

    目录 背景 创建对象的 6 种方式 方法1:new 一个对象 方法2:克隆一个对象 方法3:类派发一个对象(反射) 方法4:动态加载一个对象(反射) 方法5:构造一个对象(反射) 方法6:反序列化一个对象 总结 背景 本文教你创建对象的 6 种方式,从低端到高端,各种创建方式,总有一个适合你,没有对象的自己生成一个吧! 创建对象的 6 种方式 假设有个女朋友类: @Data @NoArgsConstructor @AllArgsConstructor class GirlFriend { pri

随机推荐