C#面向对象编程中里氏替换原则的示例详解

目录
  • 里氏替换原则
  • C# 示例
    • 糟糕的示范
    • 正确的示范
  • 总结

在面向对象编程中,SOLID 是五个设计原则的首字母缩写,旨在使软件设计更易于理解、灵活和可维护。这些原则是由美国软件工程师和讲师罗伯特·C·马丁(Robert Cecil Martin)提出的许多原则的子集,在他2000年的论文《设计原则与设计模式》中首次提出。

SOLID 原则包含:

  • S:单一功能原则(single-responsibility principle)
  • O:开闭原则(open-closed principle)
  • L:里氏替换原则(Liskov substitution principle)
  • I:接口隔离原则(Interface segregation principle)
  • D:依赖反转原则(Dependency inversion principle)

本文我们来介绍里氏替换原则。

里氏替换原则

在面向对象的程序设计中,里氏替换原则(Liskov Substitution principle)是对子类型的特别定义。它由芭芭拉·利斯科夫(Barbara Liskov)在1987年的一次会议上,在名为“数据的抽象与层次”的演说中首次提出。

里氏替换原则的内容可以描述为:派生类(子类)对象可以在程序中代替其基类(超类)对象。

也就是说,程序中的对象不管出现在什么地方,都应该可以使用其派生类(子类)的对象进行替换,而不影响程序运行的正确性。

C# 示例

我们看这样一个示例,假设一个企业有三种员工,一种是拿铁饭碗的永久雇员,一种是合同工,一种是临时工。我们设计几个类来表示这三种员工。

糟糕的示范

先定义一个 Employee 基类。

public abstract class Employee
{
    public string Name { get; set; }
    /// <summary>
    /// 计算奖金
    /// </summary>
    /// <returns></returns>
    public abstract decimal CalculateBonus();
}

再定义该基类的三个子类:

/// <summary>
/// 永久雇员
/// </summary>
public class PermanentEmployee : Employee
{
    public override decimal CalculateBonus()
    {
        return 80000;
    }
}

/// <summary>
/// 合同工
/// </summary>
public class ContractEmployee : Employee
{
    public override decimal CalculateBonus()
    {
        return 2000;
    }
}

/// <summary>
/// 临时工(临时工没有奖金)
/// </summary>
public class TemporaryEmployee : Employee
{
    public override decimal CalculateBonus()
    {
        throw new NotImplementedException(); //违反里氏替换原则
    }
}

接下来在 Main 方法中调用它们。

先定义一个类型为基类 Employee 的变量 e,再分别使用其子类 PermanentEmployee、ContractEmployee 和 TemporaryEmployee 创建对象赋值给基类变量 e,然后调用 e 的 CalculateBonus() 方法。

static void Main(string[] args)
{
    Employee e;

    e = new PermanentEmployee() { Name = "张三" };
    Console.WriteLine($"{e.Name} 的年终奖是 {e.CalculateBonus()} 元");

    e = new ContractEmployee() { Name = "李四" };
    Console.WriteLine($"{e.Name} 的年终奖是 {e.CalculateBonus()} 元");

    e = new TemporaryEmployee() { Name = "王五" };
    Console.WriteLine($"{e.Name} 的年终奖是 {e.CalculateBonus()} 元");
}

运行一下可以观察到(显而易见的),当使用 PermanentEmployee 和 ContractEmployee 类创建的对象替换基类型 Employee 的变量 e 时,调用 CalculateBonus() 方法可以正常运行,但是使用 TemporaryEmployee 类创建的对象替换变量 e 时,调用 CalculateBonus() 方法抛出了异常,导致程序无法正常运行。这就明显违反了里氏替换原则。

那么,应该如何改进一下呢?

正确的示范

我们看到,每种员工都有基本信息 Name 属性,但是由于临时工 TemporaryEmployee 没有奖金,所以不需要计算奖金。因此我们应该把计算奖金的方法 CalculateBonus 单独抽象出去,而不是让它们都继承于同一个基类,并将 TemporaryEmployee 子类中的 CalculateBonus 方法抛出一个异常。

改进后的代码:

interface IEmployee
{
    /// <summary>
    /// 计算年终奖
    /// </summary>
    /// <returns></returns>
    public decimal CalculateBonus();
}

public abstract class Employee
{
    public string Name { get; set; }
}

/// <summary>
/// 永久雇员
/// </summary>
public class PermanentEmployee : Employee, IEmployee
{
    public decimal CalculateBonus()
    {
        return 80000;
    }
}

/// <summary>
/// 合同工
/// </summary>
public class ContractEmployee : Employee, IEmployee
{
    public decimal CalculateBonus()
    {
        return 2000;
    }
}

/// <summary>
/// 临时工
/// </summary>
public class TemporaryEmployee : Employee
{
}

在 Main 方法中,将调用它们的测试代码改为:

static void Main(string[] args)
{
    Employee e;
    IEmployee ie;

    var p = new PermanentEmployee() { Name = "张三" };
    e = p;
    ie = p;
    Console.WriteLine($"{e.Name} 的年终奖是 {ie.CalculateBonus()} 元");

    var c = new ContractEmployee() { Name = "李四" };
    e = c;
    ie = c;
    Console.WriteLine($"{e.Name} 的年终奖是 {ie.CalculateBonus()} 元");

    e = new TemporaryEmployee() { Name = "王五" };
    Console.WriteLine($"{e.Name} 是临时工,无年终奖。");
}

程序运行正常。

这样,这些子类的设计便遵循了里氏替换原则。

总结

本文我介绍了 SOLID 原则中的里氏替换原则(Liskov substitution principle),并通过 C# 代码示例简明地诠释了它的含意和实现,希望对您有所帮助。

参考文档:

https://www.c-sharpcorner.com/blogs/liskov-substitution-principle-in-c-sharp

以上就是C#面向对象编程中里氏替换原则的示例详解的详细内容,更多关于C#里氏替换原则的资料请关注我们其它相关文章!

(0)

相关推荐

  • C#实现六大设计原则之里氏替换原则

    定义: 1:如果对每一个类型为 T1的对象 o1,都有类型为 T2 的对象o2,使得以 T1定义的所有程序 P 在所有的对象 o1 都代换成 o2 时,程序 P 的行为没有发生变化,那么类型 T2 是类型 T1 的子型. 2:所有引用基类的地方必须能透明地使用其子类的对象. 问题由来: 有一功能P1,由类A完成.现需要将功能P1进行扩展,扩展后的功能为P,其中P由原有功能P1与新功能P2组成. 新功能P由类A的子类B来完成,则子类B在完成新功能P2的同时,有可能会导致原有功能P1发生故障. 解决

  • C#面向对象设计原则之开闭原则

    开闭原则(OCP) 定义:对扩展开发,对修改关闭.好处: 适应性和灵活性. 稳定性和延续性. 可复用性与可维护性. 解释说明:开闭原则指的是两方面:对功能扩展开发,对修改进行关闭:有时当用户要求或需求发生变化时,我们不得不打开原来的代码进行修改,进行功能的扩展或增加,这种设计如果应用到我们以后的项目开发中会导致严重的问题,这样容易导致意外的错误.好的程序,应该保证在我们进行程序扩展时,不会更改以前的代码.如何才能保证这样的效果呢?我们在定义一个类的功能时:最好先定义他的抽象类或接口,这样在功能扩

  • C#面向对象设计原则之里氏替换原则

    里氏替换原则(LSP) 定义:在任何父类出现的地方都可以用它的子类类替换,且不影响功能.解释说明:其实LSP是对开闭原则的一个扩展,在OO思想中,我们知道对象是由一系列的状态和行为组成的,里氏替换原则说的就是在一个继承体系中,对象应该具有共同的外在特性,使用LSP时,如果想让我们的程序达到一个父类出现的地方都可以用它的子类来替换且不影响功能,那么这个父类也应该尽量声明出子类所需要的一些公共的方法,父类被子类替换之后,会比较顺利,那么为什么说它是对开闭原则的一个扩展呢?因为我们在开闭原则中说尽量使

  • C#面向对象设计原则之组合/聚合复用原则

    组合/聚合复用原则(LSP) 定义:优先使用组合,使系统更灵活,其次才考虑继承,达到复用的目的.重用的方式:继承.组合.聚合解释说明: 继承:在我们想复用代码时,我们一般会优先想到继承,但是具有继承关系的两个类是耦合度最高的两个类.(父类改了子类可能会受影响,子类改了父类也可能会受影响)如果父类的功能比较稳定,建议使用继承来实现代码复用,因为继承是静态定义的,在运行时无法动态调用. 组合:是整体与部分的关系,整体离不开部分,部分离开了整体没有意义,如飞机翅膀与飞机的关系. 聚合:也是整体与部分的

  • C#面向对象编程中开闭原则的示例详解

    目录 开闭原则 C# 示例 改进 总结 在面向对象编程中,SOLID 是五个设计原则的首字母缩写,旨在使软件设计更易于理解.灵活和可维护.这些原则是由美国软件工程师和讲师罗伯特·C·马丁(Robert Cecil Martin)提出的许多原则的子集,在他2000年的论文<设计原则与设计模式>中首次提出. SOLID 原则包含: S:单一功能原则(single-responsibility principle) O:开闭原则(open-closed principle) L:里氏替换原则(Lis

  • C#面向对象设计原则之单一职责原则

    单一职责原则(SRP) 定义:系统中的每一个类都应该只有一个职责. 好处:高内聚.低耦合. 解释说明: 单一职责也就是说我们应该让一个类或一个对象只做一件事情,每个类所要关注的就是自己要完成的职责是什么,能够引起这个类变化的原因也应该只有一个,这也是后面提到的所有的设计模式都会遵守的一个原则. 高内聚:先按照面向对象的封装特性来理解,封装也就是我们说的,应该把一个类或对象它所有相关的属性.方法.行为放到一起,放到一个类中,这样就实现了一个封装的特性.那么内聚,就是一个类里面应该包含它所有的属性和

  • C# 实例解释面向对象编程中的单一功能原则(示例代码)

    在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有且仅有一个单一的功能,并且该功能应该由这个类完全封装起来. 在面向对象编程中,SOLID 是五个设计原则的首字母缩写,旨在使软件设计更易于理解.灵活和可维护.这些原则是由美国软件工程师和讲师罗伯特·C·马丁(Robert Cecil Martin)提出的许多原则的子集,在他2000年的论文<设计原则与设计模式>中首次提出. SOLID 原则包含: S:单一功能原则(single

  • C#面向对象编程中里氏替换原则的示例详解

    目录 里氏替换原则 C# 示例 糟糕的示范 正确的示范 总结 在面向对象编程中,SOLID 是五个设计原则的首字母缩写,旨在使软件设计更易于理解.灵活和可维护.这些原则是由美国软件工程师和讲师罗伯特·C·马丁(Robert Cecil Martin)提出的许多原则的子集,在他2000年的论文<设计原则与设计模式>中首次提出. SOLID 原则包含: S:单一功能原则(single-responsibility principle) O:开闭原则(open-closed principle) L

  • C#面向对象编程中接口隔离原则的示例详解

    目录 接口隔离原则 C# 示例 糟糕的示范 正确的示范 总结 在面向对象编程中,SOLID 是五个设计原则的首字母缩写,旨在使软件设计更易于理解.灵活和可维护.这些原则是由美国软件工程师和讲师罗伯特·C·马丁(Robert Cecil Martin)提出的许多原则的子集,在他2000年的论文<设计原则与设计模式>中首次提出. SOLID 原则包含: S:单一功能原则(single-responsibility principle) O:开闭原则(open-closed principle) L

  • C#面向对象编程中依赖反转原则的示例详解

    在面向对象编程中,SOLID 是五个设计原则的首字母缩写,旨在使软件设计更易于理解.灵活和可维护.这些原则是由美国软件工程师和讲师罗伯特·C·马丁(Robert Cecil Martin)提出的许多原则的子集,在他2000年的论文<设计原则与设计模式>中首次提出. SOLID 原则包含: S:单一功能原则(single-responsibility principle) O:开闭原则(open-closed principle) L:里氏替换原则(Liskov substitution pri

  • 举例解析Java的设计模式编程中里氏替换原则的意义

    里氏替换原则,OCP作为OO的高层原则,主张使用"抽象(Abstraction)"和"多态(Polymorphism)"将设计中的静态结构改为动态结构,维持设计的封闭性."抽象"是语言提供的功能."多态"由继承语义实现. 里氏替换原则包含以下4层含义: 子类可以实现父类的抽象方法,但是不能覆盖父类的非抽象方法. 子类中可以增加自己特有的方法. 当子类覆盖或实现父类的方法时,方法的前置条件(即方法的形参)要比父类方法的输入参数更

  • Java面向对象编程中final关键字的使用方法详解

    在Java中通过final关键字来声明对象具有不变性(immutable),这里的对象包括变量,方法,类,与C++中的const关键字效果类似. immutable指对象在创建之后,状态无法被改变 可以从三个角度考虑使用final关键字: 代码本身:不希望final描述的对象所表现的含义被改变 安全:final对象具有只读属性,是线程安全的 效率:无法修改final对象本身,对其引用的操作更为高效 final 变量 定义final Object a,则a只能被初始化一次,一旦初始化,a的数据无法

  • PHP面向对象之里氏替换原则简单示例

    本文实例讲述了PHP面向对象之里氏替换原则.分享给大家供大家参考,具体如下: 里氏替换原则(Liskov Substitution Principle) 里氏替换原则告诉我们,在软件中将一个基类对象替换成它的子类对象,程序将不会产生任何错误和异常,反过来则不成立,如果一个软件实体使用的是一个子类对象的话,那么它不一定能够使用基类对象.里氏替换原则是实现开闭原则的重要方式之一,由于使用基类对象的地方都可以使用子类对象,因此在程序中尽量使用基类类型来对对象进行定义,而在运行时再确定其子类类型,用子类

  • Java编程中的4种代码块详解

    在Java编程中,代码块就是指用"{}"括起来的代码.下面看一下这四种代码块. 1.普通代码块 就是指类中方法的方法体. public void xxx(){ //code } 2.构造块 下面用"{}"括起来的代码片段,构造块在创建对象时会被调用,每次创建对象时都会被调用,并且优先于类构造函数(包括有参和无参的)执行. 构造块中定义的变量是局部变量. public class Client { {//构造代码块 System.out.println("执

  • Python编程中*args与**kwargs区别作用详解

    相信学Python的小伙伴肯定有这样的尴尬局面,给一个函数不会用, 原因是:不知道参数列表中的类型是什么意思,比如初学者都会疑问的:*args和**kwargs到底是怎么用. 当你知道这个时,我猜你肯定能会用好多函数了! #*args的用法:当传入的参数个数未知,且不需要知道参数名称时. def func_arg(farg, *args): print("formal arg:", farg) for arg in args: print("another arg:"

  • 详解Python中生成随机数据的示例详解

    目录 随机性有多随机 加密安全性 PRNG random 模块 数组 numpy.random 相关数据的生成 random模块与NumPy对照表 CSPRNG 尽可能随机 os.urandom() secrets 最佳保存方式 UUID 工程随机性的比较 在日常工作编程中存在着各种随机事件,同样在编程中生成随机数字的时候也是一样,随机有多随机呢?在涉及信息安全的情况下,它是最重要的问题之一.每当在 Python 中生成随机数据.字符串或数字时,最好至少大致了解这些数据是如何生成的. 用于在 P

随机推荐