利用Python进行数据可视化的实例代码

目录
  • 前言
  • 首先搭建环境
  • 实例代码
    • 例子1:
    • 例子2:
    • 例子3:
    • 例子4:
    • 例子5:
    • 例子6:
  • 总结

前言

前面写过一篇用Python制作PPT的博客,感兴趣的可以参考

用Python制作PPT

这篇是关于用Python进行数据可视化的,准备作为一个长贴,随时更新有价值的Python可视化用例,都是网上搜集来的,与君共享,本文所有测试均基于Python3.

首先搭建环境

$pip install pyecharts -U
$pip install echarts-themes-pypkg
$pip install snapshot_selenium
$pip install echarts-countries-pypkg
$pip install echarts-cities-pypkg
$pip install echarts-china-provinces-pypkg
$pip install echarts-china-cities-pypkg
$pip install echarts-china-counties-pypkg
$pip install echarts-china-misc-pypkg
$pip install echarts-united-kingdom-pypkg
$pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts
$git clone https://github.com/pyecharts/pyecharts.git
$cd pyecharts/
$pip install -r requirements.txt
$python setup.py install
 

一顿操作下来,该装的不该装的都装上了,多装一些包没坏处,说不定哪天就用上了呢

实例代码

例子1:

from pyecharts.charts import Bar
from pyecharts import options as opts

bar = (
    Bar()
    .add_xaxis(["chenshan", "maoyi", "longdai", "kuzi", "fengyi", "gaogenxie", "wazi"])
    .add_yaxis("storeA", [114, 55, 27, 101, 125, 27, 105])
    .add_yaxis("storeB", [57, 134, 137, 129, 145, 60, 49])
    .set_global_opts(title_opts=opts.TitleOpts(title="sales"))
)
#bar.render_notebook()
bar.render()

render():默认将会在根目录下生成一个 render.html 的文件,支持 path 参数,设置文件保存位置,如 render("./xx/xxx.html").

结果是以网页的形式输出的,执行后,在当前目录下生成render.html,用浏览器打开,最好事先安装chrome浏览器.

例子2:

from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker

pie = (
    Pie()
    .add("", [list(z) for z in zip(Faker.choose(), Faker.values())])
    .set_colors(["blue", "green", "yellow", "red", "pink", "orange", "purple"])
    .set_global_opts(title_opts=opts.TitleOpts(title="Pie-设置颜色"))
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
)

pie.render()

例子3:

import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker

c = (
    Line()
    .add_xaxis(Faker.choose())
    .add_yaxis("storeA", Faker.values(), is_smooth=True)
    .add_yaxis("storeB", Faker.values(), is_smooth=True)
    .set_global_opts(title_opts=opts.TitleOpts(title="Line-smooth"))
)
c.render()

例子4:

from pyecharts import options as opts
from pyecharts.charts import Kline

data = [
    [2320.26, 2320.26, 2287.3, 2362.94],
    [2300, 2291.3, 2288.26, 2308.38],
    [2295.35, 2346.5, 2295.35, 2345.92],
    [2347.22, 2358.98, 2337.35, 2363.8],
    [2360.75, 2382.48, 2347.89, 2383.76],
    [2383.43, 2385.42, 2371.23, 2391.82],
    [2377.41, 2419.02, 2369.57, 2421.15],
    [2425.92, 2428.15, 2417.58, 2440.38],
    [2411, 2433.13, 2403.3, 2437.42],
    [2432.68, 2334.48, 2427.7, 2441.73],
    [2430.69, 2418.53, 2394.22, 2433.89],
    [2416.62, 2432.4, 2414.4, 2443.03],
    [2441.91, 2421.56, 2418.43, 2444.8],
    [2420.26, 2382.91, 2373.53, 2427.07],
    [2383.49, 2397.18, 2370.61, 2397.94],
    [2378.82, 2325.95, 2309.17, 2378.82],
    [2322.94, 2314.16, 2308.76, 2330.88],
    [2320.62, 2325.82, 2315.01, 2338.78],
    [2313.74, 2293.34, 2289.89, 2340.71],
    [2297.77, 2313.22, 2292.03, 2324.63],
    [2322.32, 2365.59, 2308.92, 2366.16],
    [2364.54, 2359.51, 2330.86, 2369.65],
    [2332.08, 2273.4, 2259.25, 2333.54],
    [2274.81, 2326.31, 2270.1, 2328.14],
    [2333.61, 2347.18, 2321.6, 2351.44],
    [2340.44, 2324.29, 2304.27, 2352.02],
    [2326.42, 2318.61, 2314.59, 2333.67],
    [2314.68, 2310.59, 2296.58, 2320.96],
    [2309.16, 2286.6, 2264.83, 2333.29],
    [2282.17, 2263.97, 2253.25, 2286.33],
    [2255.77, 2270.28, 2253.31, 2276.22],
]

k = (
    Kline()
    .add_xaxis(["2017/7/{}".format(i + 1) for i in range(31)])
    .add_yaxis("k-line", data)
    .set_global_opts(
        yaxis_opts=opts.AxisOpts(is_scale=True),
        xaxis_opts=opts.AxisOpts(is_scale=True),
        title_opts=opts.TitleOpts(title="Kline-examples"),
    )

)
k.render()

例子5:

from pyecharts import options as opts
from pyecharts.charts import Gauge

g = (
    Gauge()
    .add("", [("complete", 66.6)])
    .set_global_opts(title_opts=opts.TitleOpts(title="Gauge-basic examples"))
)

g.render()

例子6:

from pyecharts import options as opts
from pyecharts.charts import Bar

(
    Bar()
    .add_xaxis(
        [
            "名字很长的X轴标签1",
            "名字很长的X轴标签2",
            "名字很长的X轴标签3",
            "名字很长的X轴标签4",
            "名字很长的X轴标签5",
            "名字很长的X轴标签6",
        ]
    )
    .add_yaxis("商家A", [10, 20, 30, 40, 50, 40])
    .add_yaxis("商家B", [20, 10, 40, 30, 40, 50])
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
        title_opts=opts.TitleOpts(title="Bar-旋转X轴标签", subtitle="解决标签名字过长的问题"),
    )
    .render()
)

from pyecharts import options as opts
from pyecharts.faker import Faker
from pyecharts.charts import Page, Pie
l1 = ['aa','bb','cc','dd','ee']
num =[10,20,15,25,30]
c = (
        Pie()
        .add(
            "",
            [list(z) for z in zip(l1, num)],
            radius=["40%", "75%"],   # 圆环的粗细和大小
        )
        .set_global_opts(
            title_opts=opts.TitleOpts(title="Pie-Radius"),
            legend_opts=opts.LegendOpts(
                orient="vertical", pos_top="5%", pos_left="2%"  # 左面比例尺
            ),
        )
        .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    )
c.render()

from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.charts import Page, Pie
l1 = ['aa','bb','cc','dd','ee']
num =[10,20,15,25,30]
c = (
        Pie()
        .add(
            "",
            [list(z) for z in zip(l1, num)],
            radius=["40%", "55%"],
            label_opts=opts.LabelOpts(
                position="outside",
                formatter="{a|{a}}{abg|} {hr|} {b|{b}: }{c}  {per|{d}%}  ",
                background_color="#eee",
                border_color="#aaa",
                border_width=1,
                border_radius=4,
                rich={
                    "a": {"color": "#999", "lineHeight": 22, "align": "center"},
                    "abg": {
                        "backgroundColor": "#e3e3e3",
                        "width": "100%",
                        "align": "right",
                        "height": 22,
                        "borderRadius": [4, 4, 0, 0],
                    },
                    "hr": {
                        "borderColor": "#aaa",
                        "width": "100%",
                        "borderWidth": 0.5,
                        "height": 0,
                    },
                    "b": {"fontSize": 16, "lineHeight": 33},
                    "per": {
                        "color": "#eee",
                        "backgroundColor": "#334455",
                        "padding": [2, 4],
                        "borderRadius": 2,
                    },
                },
            ),
        )
        .set_global_opts(title_opts=opts.TitleOpts(title="Pie-富文本示例"))
    )
c.render()

from pyecharts import options as opts
from pyecharts.charts import Line, Bar, Grid
bar = (
    Bar()
    .add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
    .add_yaxis("商家A", [114, 55, 27, 101, 125, 27, 105])
    .add_yaxis("商家B", [57, 134, 137, 129, 145, 60, 49])
    .set_global_opts(title_opts=opts.TitleOpts(title="运维之路"),)
)
week_name_list = ["周一", "周二", "周三", "周四", "周五", "周六", "周日"]
high_temperature = [11, 11, 15, 13, 12, 13, 10]
low_temperature = [1, -2, 2, 5, 3, 2, 0]
line2 = (
    Line(init_opts=opts.InitOpts(width="1600px", height="800px"))
    .add_xaxis(xaxis_data=week_name_list)
    .add_yaxis(
        series_name="最高气温",
        y_axis=high_temperature,
        markpoint_opts=opts.MarkPointOpts(
            data=[
                opts.MarkPointItem(type_="max", name="最大值"),
                opts.MarkPointItem(type_="min", name="最小值"),
            ]
        ),
        markline_opts=opts.MarkLineOpts(
            data=[opts.MarkLineItem(type_="average", name="平均值")]
        ),
    )
    .add_yaxis(
        series_name="最低气温",
        y_axis=low_temperature,
        markpoint_opts=opts.MarkPointOpts(
            data=[opts.MarkPointItem(value=-2, name="周最低", x=1, y=-1.5)]
        ),
        markline_opts=opts.MarkLineOpts(
            data=[
                opts.MarkLineItem(type_="average", name="平均值"),
                opts.MarkLineItem(symbol="none", x="90%", y="max"),
                opts.MarkLineItem(symbol="circle", type_="max", name="最高点"),
            ]
        ),
    )
    .set_global_opts(
        #title_opts=opts.TitleOpts(title="气温变化", subtitle="纯属虚构"),
        tooltip_opts=opts.TooltipOpts(trigger="axis"),
        toolbox_opts=opts.ToolboxOpts(is_show=True),
        xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False),
        #legend_opts=opts.LegendOpts(pos_left="right"),
    )
    #.render("temperature_change_line_chart.html")
)
# 最后的 Grid
#grid_chart = Grid(init_opts=opts.InitOpts(width="1400px", height="800px"))
grid_chart = Grid()
grid_chart.add(
    bar,
    grid_opts=opts.GridOpts(
        pos_left="3%", pos_right="1%", height="20%"
    ),
)
# wr
grid_chart.add(
    line2,
    grid_opts=opts.GridOpts(
        pos_left="3%", pos_right="1%", pos_top="40%", height="35%"
    ),
)
#grid_chart.render("professional_kline_chart.html")
grid_chart.render()

from pyecharts import options as opts
from pyecharts.charts import Radar
v1=[[83, 92, 87, 49, 89, 86]]  # 数据必须为二维数组,否则会集中一个指示器显示
v2=[[88, 95, 66, 43, 86, 96]]
v3=[[80, 92, 87, 58, 78, 81]]
radar1=(
    Radar()
    .add_schema(# 添加schema架构
        schema=[
            opts.RadarIndicatorItem(name='传球',max_=100),# 设置指示器名称和最大值
            opts.RadarIndicatorItem(name='射门',max_=100),
            opts.RadarIndicatorItem(name='身体',max_=100),
            opts.RadarIndicatorItem(name='防守',max_=100),
            opts.RadarIndicatorItem(name='速度',max_=100),
            opts.RadarIndicatorItem(name='盘带',max_=100),
        ]
    )
    .add('罗纳尔多',v1,color="#f9713c") # 添加一条数据,参数1为数据名,参数2为数据,参数3为颜色
    .add('梅西',v2,color="#4169E1")
    .add('苏亚雷斯',v3,color="#00BFFF")
    .set_global_opts(title_opts=opts.TitleOpts(title='雷达图'),)
)
radar1.render()

import math
import random
from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.charts import Page, Polar
c = (
        Polar()
        .add_schema(
            angleaxis_opts=opts.AngleAxisOpts(data=Faker.week, type_="category")
        )
        .add("A", [1, 2, 3, 4, 3, 5, 1], type_="bar", stack="stack0")
        .add("B", [2, 4, 6, 1, 2, 3, 1], type_="bar", stack="stack0")
        .add("C", [1, 2, 3, 4, 1, 2, 5], type_="bar", stack="stack0")
        .set_global_opts(title_opts=opts.TitleOpts(title="Polar-AngleAxis"))
    )
c.render()

import math
import random
from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.charts import Page, Polar
data = [(i, random.randint(1, 100)) for i in range(10)]
c = (
        Polar()
        .add("", data, type_="effectScatter",
             effect_opts=opts.EffectOpts(scale=10, period=5),
             label_opts=opts.LabelOpts(is_show=False))
        #  type默认为"line",
        #  "effectScatter",scatter,bar
        .set_global_opts(title_opts=opts.TitleOpts(title="Polar-Scatter0"))
)
c.render()

import math
import random
from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.charts import Page, Polar
c = (
        Polar()
        .add_schema(
            radiusaxis_opts=opts.RadiusAxisOpts(data=Faker.week, type_="category")
        )
        .add("A", [1, 2, 3, 4, 3, 5, 1], type_="bar", stack="stack0")
        .add("B", [2, 4, 6, 1, 2, 3, 1], type_="bar", stack="stack0")
        .add("C", [1, 2, 3, 4, 1, 2, 5], type_="bar", stack="stack0")
        .set_global_opts(title_opts=opts.TitleOpts(title="Polar-RadiusAxis"))
)
c.render()

from pyecharts import options as opts
from pyecharts.charts import Liquid, Page
from pyecharts.globals import SymbolType

c = (
        Liquid()
        .add("lq", [0.61, 0.7],shape='rect',is_outline_show=False)
        # 水球外形,有' circle', 'rect', 'roundRect', 'triangle', 'diamond', 'pin', 'arrow' 可选。
        # 默认 'circle'。也可以为自定义的 SVG 路径。
        #is_outline_show设置边框
        .set_global_opts(title_opts=opts.TitleOpts(title="Liquid-基本示例"))
)
c.render()

散点图:

from pyecharts.charts import Scatter
import pyecharts.options as opts

female_height = [161.2,167.5,159.5,157,155.8,170,159.1,166,176.2,160.2,172.5,170.9,172.9,153.4,160,147.2,168.2,175,157,167.6,159.5,175,166.8,176.5,170.2,]
female_weight = [51.6,59,49.2,63,53.6,59,47.6,69.8,66.8,75.2,55.2,54.2,62.5,42,50,49.8,49.2,73.2,47.8,68.8,50.6,82.5,57.2,87.8,72.8,54.5,]

male_height = [174 ,175.3 ,193.5 ,186.5 ,187.2 ,181.5 ,184 ,184.5 ,175 ,184 ,180 ,177.8 ,192 ,176 ,174 ,184 ,192.7 ,171.5 ,173 ,176 ,176 ,180.5 ,172.7 ,176 ,173.5 ,178 ,]
male_weight = [65.6 ,71.8 ,80.7 ,72.6 ,78.8 ,74.8 ,86.4 ,78.4 ,62 ,81.6 ,76.6 ,83.6 ,90 ,74.6 ,71 ,79.6 ,93.8 ,70 ,72.4 ,85.9 ,78.8 ,77.8 ,66.2 ,86.4 ,81.8 ,89.6 ,]

scatter = Scatter()
scatter.add_xaxis(female_height)
scatter.add_xaxis(male_height)
scatter.add_yaxis("female", female_weight, symbol_size=15) #散点大小
scatter.add_yaxis("male", male_weight, symbol_size=15) #散点大小
scatter.set_global_opts(title_opts=opts.TitleOpts(title="身高体重分布"),
                        xaxis_opts=opts.AxisOpts(
                            type_ = "value", # 设置x轴为数值轴
                            splitline_opts=opts.SplitLineOpts(is_show = True)), # x轴分割线
                        yaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True))# y轴分割线
                        )
scatter.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
scatter.render("./html/scatter_base.html")

总结

到此这篇关于利用Python进行数据可视化的文章就介绍到这了,更多相关Python数据可视化内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python数据可视化之画图

    安装数据可视化模块matplotlib:pip install matplotlib 导入matplotlib模块下的pyplot 1 折线图 from matplotlib import pyplot #横坐标 year=[2010,2012,2014,2016] #纵坐标 perple=[20,40,60,100] #生成折线图:函数polt pyplot.plot(year,perple) #设置横坐标说明 pyplot.xlabel('year') #设置纵坐标说明 pyplot.yla

  • python使用pyecharts库画地图数据可视化的实现

    python使用pyecharts库画地图数据可视化导库中国地图代码结果世界地图代码结果省级地图代码结果地级市地图代码结果 导库 from pyecharts import options as opts from pyecharts.charts import Map 中国地图 代码 data = [('湖北', 9074),('浙江', 661),('广东', 632),('河南', 493),('湖南', 463), ('安徽', 340),('江西', 333),('重庆', 275),

  • Python数据分析:手把手教你用Pandas生成可视化图表的教程

    大家都知道,Matplotlib 是众多 Python 可视化包的鼻祖,也是Python最常用的标准可视化库,其功能非常强大,同时也非常复杂,想要搞明白并非易事.但自从Python进入3.0时代以后,pandas的使用变得更加普及,它的身影经常见于市场分析.爬虫.金融分析以及科学计算中. 作为数据分析工具的集大成者,pandas作者曾说,pandas中的可视化功能比plt更加简便和功能强大.实际上,如果是对图表细节有极高要求,那么建议大家使用matplotlib通过底层图表模块进行编码.当然,我

  • Python数据可视化:箱线图多种库画法

    概念 箱线图通过数据的四分位数来展示数据的分布情况.例如:数据的中心位置,数据间的离散程度,是否有异常值等. 把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)分别为数据的第25%,50%和75%的数字. 四分位间距(Interquartilerange(IQR))=上分位数(upper quartile)-下分位数(lower quartile) 箱线图分为两部分,分别是箱(box)和须(whisker).箱(box)用来表示从第一分位到第三分位的数

  • python如何爬取网站数据并进行数据可视化

    前言 爬取拉勾网关于python职位相关的数据信息,并将爬取的数据已csv各式存入文件,然后对csv文件相关字段的数据进行清洗,并对数据可视化展示,包括柱状图展示.直方图展示.词云展示等并根据可视化的数据做进一步的分析,其余分析和展示读者可自行发挥和扩展包括各种分析和不同的存储方式等..... 一.爬取和分析相关依赖包 Python版本: Python3.6 requests: 下载网页 math: 向上取整 time: 暂停进程 pandas:数据分析并保存为csv文件 matplotlib:

  • 利用Python代码实现数据可视化的5种方法详解

    前言 数据科学家并不逊色于艺术家.他们用数据可视化的方式绘画,试图展现数据内隐藏的模式或表达对数据的见解.更有趣的是,一旦接触到任何可视化的内容.数据时,人类会有更强烈的知觉.认知和交流. 数据可视化是数据科学家工作中的重要组成部分.在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解.创建可视化方法确实有助于使事情变得更加清晰易懂,特别是对于大型.高维数据集.在项目结束时,以清晰.简洁和引人注目的方式展现最终结果是非常

  • 利用Python绘制MySQL数据图实现数据可视化

    本教程的所有Python代码可以在网上的IPython notebook中获取. 考虑在公司里使用Plotly?可以看一下Plotly的on-premises企业版.(注:On-premises是指软件运行在工作场所或公司内部,详见维基百科) 注意操作系统:尽管Windows或Mac用户也可以跟随本文操作,但本文假定你使用的是Ubuntu系统(Ubuntu桌面版或Ubuntu服务器版).如果你没有Ubuntu Server,你可以通过Amazon的Web服务建立一个云平台(阅读这份教程的前半部分

  • Python数据可视化 pyecharts实现各种统计图表过程详解

    1.pyecharts介绍 Echarts是一款由百度公司开发的开源数据可视化JS库,pyecharts是一款使用python调用echarts生成数据可视化的类库,可实现柱状图,折线图,饼状图,地图等统计图表. 2.柱状图 适用场合是二维数据集(每个数据点包括两个值x和y),但只有一个维度需要比较,用于显示一段时间内的数据变化或显示各项之间的比较情况. 优点: 利用柱子的高度,反映数据的差异,肉眼对高度差异很敏感. 缺点: 只适用中小规模的数据集. 柱状图最基本用法 from pyechart

  • Python数据可视化库seaborn的使用总结

    seaborn是python中的一个非常强大的数据可视化库,它集成了matplotlib,下图为seaborn的官网,如果遇到疑惑的地方可以到官网查看.http://seaborn.pydata.org/ 从官网的主页我们就可以看出,seaborn在数据可视化上真的非常强大. 1.首先我们还是需要先引入库,不过这次要用到的python库比较多. import numpy as np import pandas as pd import matplotlib as mpl import matpl

  • 利用Python进行数据可视化常见的9种方法!超实用!

    前言 如同艺术家们用绘画让人们更贴切的感知世界,数据可视化也能让人们更直观的传递数据所要表达的信息. 我们今天就分享一下如何用 Python 简单便捷的完成数据可视化. 其实利用 Python 可视化数据并不是很麻烦,因为 Python 中有两个专用于可视化的库 matplotlib 和 seaborn 能让我们很容易的完成任务. Matplotlib:基于Python的绘图库,提供完全的 2D 支持和部分 3D 图像支持.在跨平台和互动式环境中生成高质量数据时,matplotlib 会很有帮助

随机推荐