tf.concat中axis的含义与使用详解

tensorflow中tf.concat的axis的使用我一直理解的比较模糊,这次做个笔记理下自己的思路。

import tensorflow as tf
tf.enable_eager_execution()
import numpy as np

先生成两个矩阵m1, 和m2, 大小为两行三列

m1 = np.random.rand(2,3) # m1.shape (2,3)
m1
>>array([[0.44529968, 0.42451167, 0.07463199],
    [0.35787143, 0.22926186, 0.34583839]])
m2 = np.random.rand(2,3) # m2.shape (2,3)
m2
>>array([[0.92811531, 0.6180391 , 0.71969461],
    [0.00564108, 0.55381637, 0.17155987]])

接下来采用tf.concat进行连接,简单来说,axis=0实际就是按行拼接,axis=1就是按列拼接

# axis = 0
m3 = tf.concat([m1,m2],axis=0)
m3
>> array([[0.44529968, 0.42451167, 0.07463199],
    [0.35787143, 0.22926186, 0.34583839],
    [0.92811531, 0.6180391 , 0.71969461],
    [0.00564108, 0.55381637, 0.17155987]])
m3.shape
>> (4,3)

# axis = 1
m4 = tf.concat([m1,m2],axis=1)
m4
>>array([[0.44529968, 0.42451167, 0.07463199, 0.92811531, 0.6180391 ,
    0.71969461],
    [0.35787143, 0.22926186, 0.34583839, 0.00564108, 0.55381637,
    0.17155987]])
m4.shape
>>(2,6)

但这实际上这只有在我们的输入是二维矩阵时才可以这样理解。axis的实际含义是根据axis指定的维度进行连接,如矩阵m1的维度为(2,3), 那么axis=0就代表了第一个维度‘2',因此,将m1和m2按照第一个维度进行连接,得到的新的矩阵就是将第一维度进行相加,其余维度不变,即维度变成了(4,3).

同理,axis=1时就是将矩阵的第二维度进行合并,其余维度不变,即维度变成了(2,6)。

接下来处理三个维度的数据,这也是我们在神经网络数据中经常要用到的,增加的一个维度通常代表了batch_size. 如下面的m5, batch_size=5, 可以理解为每个样本是个2*3的矩阵,一次将5个样本放在一起。

m5 = np.random.rand(5,2,3)
m6 = np.random.rand(5,2,3)
m5
>>array([[[0.04347217, 0.03368232, 0.36017024],
    [0.74223151, 0.06609717, 0.38155531]],

    [[0.50602728, 0.355745 , 0.93379797],
    [0.97572621, 0.53745311, 0.66461841]],

    [[0.92832972, 0.02441683, 0.48436203],
    [0.69651043, 0.24194495, 0.64623769]],

    [[0.66667596, 0.60053027, 0.2970753 ],
    [0.13281764, 0.29326326, 0.32393028]],

    [[0.40892782, 0.48516547, 0.02298178],
    [0.51239083, 0.40151008, 0.29913204]]])
m6
>>array([[[0.58001909, 0.56925704, 0.09798246],
    [0.20841893, 0.62683633, 0.17923217]],

    [[0.91216164, 0.0200782 , 0.3986682 ],
    [0.86687006, 0.83730576, 0.48443545]],

    [[0.65641654, 0.59786311, 0.2055584 ],
    [0.65391822, 0.74093133, 0.02416627]],

    [[0.80778861, 0.22644312, 0.91610686],
    [0.0789411 , 0.86955002, 0.41437046]],

    [[0.97821668, 0.97118328, 0.97714882],
    [0.21543173, 0.06964724, 0.35360077]]])

在这种情况下,axis=0代表的第一个维度的含义就不再是之前认为的行的概念了,现在m5的第一维度的值是5,代表的是batch_size。仍然按照之前的理解,如果设置axis=0, axis=0就是将第一维度进行相加,其余维度不变,因此我们可以得到新的维度为(10,2,3)。

m7 = tf.concat([m5, m6],axis=0)
m7
>> array([[[0.04347217, 0.03368232, 0.36017024],
    [0.74223151, 0.06609717, 0.38155531]],

    [[0.50602728, 0.355745 , 0.93379797],
    [0.97572621, 0.53745311, 0.66461841]],

    [[0.92832972, 0.02441683, 0.48436203],
    [0.69651043, 0.24194495, 0.64623769]],

    [[0.66667596, 0.60053027, 0.2970753 ],
    [0.13281764, 0.29326326, 0.32393028]],

    [[0.40892782, 0.48516547, 0.02298178],
    [0.51239083, 0.40151008, 0.29913204]],

    [[0.58001909, 0.56925704, 0.09798246],
    [0.20841893, 0.62683633, 0.17923217]],

    [[0.91216164, 0.0200782 , 0.3986682 ],
    [0.86687006, 0.83730576, 0.48443545]],

    [[0.65641654, 0.59786311, 0.2055584 ],
    [0.65391822, 0.74093133, 0.02416627]],

    [[0.80778861, 0.22644312, 0.91610686],
    [0.0789411 , 0.86955002, 0.41437046]],

    [[0.97821668, 0.97118328, 0.97714882],
    [0.21543173, 0.06964724, 0.35360077]]])
m7.shape
>>(10,2,3)

同理,也可以进行axis=1, axis=2的concat操作。

此外,axis的值也可以设置为负数,如axis=-1实际上就是指倒数第一个维度,如m5的倒数第一个维度的值就是‘3'。因此,axis=2的操作和axis=-1的操作是等价的。

以上这篇tf.concat中axis的含义与使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python的concat等多种用法详解

    本文为大家分享了python的concat等多种用法,供大家参考,具体内容如下 1.numpy中的concatenate()函数: >>> a = np.array([[1, 2], [3, 4]]) >>> b = np.array([[5, 6]]) >>> np.concatenate((a, b), axis=0) array([[1, 2], [3, 4], [5, 6]]) >>> np.concatenate((a, b

  • pandas的连接函数concat()函数的具体使用方法

    concat()函数的具体用法 pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True) 参数含义 objs:Series,DataFrame或Panel对象的序列或映射.如果传递了dict,则排序的键将用作键参数,除非它被传递,在这种情况下,将选择值(见下文).任何

  • tensorflow对图像进行拼接的例子

    tensorflow对图像进行多个块的行列拼接tf.concat(), tf.stack() 在深度学习过程中,通过卷积得到的图像块大小是8×8×1024的图像块,对得到的图像块进行reshape得到[8×8]×[32×32],其中[8×8]是图像块的个数,[32×32]是小图像的大小.通过tf.concat对小块的图像进行拼接. -在做图像卷积的过程中,做了这样一个比较麻烦的拼接,现在还没想到更好的拼接方法,因为是块拼接,开始的时候使用了reshape,但是得到的结果不对,需要确定清楚数据的维

  • 在Pandas中DataFrame数据合并,连接(concat,merge,join)的实例

    最近在工作中,遇到了数据合并.连接的问题,故整理如下,供需要者参考~ 一.concat:沿着一条轴,将多个对象堆叠到一起 concat方法相当于数据库中的全连接(union all),它不仅可以指定连接的方式(outer join或inner join)还可以指定按照某个轴进行连接.与数据库不同的是,它不会去重,但是可以使用drop_duplicates方法达到去重的效果. concat(objs, axis=0, join='outer', join_axes=None, ignore_ind

  • tf.concat中axis的含义与使用详解

    tensorflow中tf.concat的axis的使用我一直理解的比较模糊,这次做个笔记理下自己的思路. import tensorflow as tf tf.enable_eager_execution() import numpy as np 先生成两个矩阵m1, 和m2, 大小为两行三列 m1 = np.random.rand(2,3) # m1.shape (2,3) m1 >>array([[0.44529968, 0.42451167, 0.07463199], [0.35787

  • 对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解

    在用tensorflow做一维的卷积神经网络的时候会遇到tf.nn.conv1d和layers.conv1d这两个函数,但是这两个函数有什么区别呢,通过计算得到一些规律. 1.关于tf.nn.conv1d的解释,以下是Tensor Flow中关于tf.nn.conv1d的API注解: Computes a 1-D convolution given 3-D input and filter tensors. Given an input tensor of shape [batch, in_wi

  • 对python中的*args与**kwgs的含义与作用详解

    在定义函数的时候参数通常会使用 *args与**kwgs,形参与实参的区别不再赘述,我们来解释一下这两个的作用. *args是非关键字参数,用于元组,**kw是关键字参数 例如下面的代码 def foo(*args,**kwargs): print 'args is',args print 'kwargs is',kwargs foo(1,2) foo(k=1,w=2,a=3,r=4,g=5,s=6) foo(1,2,a=1,b=2,c=2) foo('a',1,None,a=1,b='2',c

  • 对numpy和pandas中数组的合并和拆分详解

    合并 numpy中 numpy中可以通过concatenate,指定参数axis=0 或者 axis=1,在纵轴和横轴上合并两个数组. import numpy as np import pandas as pd arr1=np.ones((3,5)) arr1 Out[5]: array([[ 1., 1., 1., 1., 1.], [ 1., 1., 1., 1., 1.], [ 1., 1., 1., 1., 1.]]) arr2=np.random.randn(15).reshape(

  • JavaScript 中有关数组对象的方法(详解)

    JS 处理数组多种方法 js 中的数据类型分为两大类:原始类型和对象类型. 原始类型包括:数值.字符串.布尔值.null.undefined 对象类型包括:对象即是属性的集合,当然这里又两个特殊的对象----函数(js中的一等对象).数组(键值的有序集合). 数组元素的添加 arrayObj.push([item1 [item2 [. . . [itemN ]]]]); 将一个或多个新元素添加到数组结尾,并返回数组新长度 arrayObj.unshift([item1 [item2 [. . .

  • node.js中grunt和gulp的区别详解

    node.js中grunt和gulp的区别详解 自nodeJS登上前端舞台,自动化构建变得越来越流行.目前最流行的当属grunt和gulp,这两个光看名字挺像,功能也差不多,不过gulp能在grunt这位大哥如日中天的境况下开辟出自己的一片天地,有着她独到的优点. 易用 Gulp相比Grunt更简洁,而且遵循代码优于配置策略,维护Gulp更像是写代码. 高效 Gulp相比Grunt更有设计感,核心设计基于Unix流的概念,通过管道连接,不需要写中间文件. 高质量 Gulp的每个插件只完成一个功能

  • C# 中SharpMap的简单使用实例详解

    本文是利用ShapMap实现GIS的简单应用的小例子,以供学习分享使用.关于SharpMap的说明,网上大多是以ShapeFile为例进行简单的说明,就连官网上的例子也不多.本文是自己参考了源代码进行整理的,主要是WinForm的例子.原理方面本文也不过多论述,主要是实例演示,需要的朋友还是以SharpMap源码进行深入研究. 什么是SharpMap ? SharpMap是一个基于.net 2.0使用C#开发的Map渲染类库,可以渲染各类GIS数据(目前支持ESRI Shape和PostGIS格

  • Linux中 sed 和 awk的用法详解

    sed用法: sed是一个很好的文件处理工具,本身是一个管道命令,主要是以行为单位进行处理,可以将数据行进行替换.删除.新增.选取等特定工作,下面先了解一下sed的用法 sed命令行格式为: sed [-nefri] 'command' 输入文本 常用选项: -n∶使用安静(silent)模式.在一般 sed 的用法中,所有来自 STDIN的资料一般都会被列出到萤幕上.但如果加上 -n 参数后,则只有经过sed 特殊处理的那一行(或者动作)才会被列出来. -e∶直接在指令列模式上进行 sed 的

  • 对python中的argv和argc使用详解

    主要问题 为什么argv中第一个,即index=0的内容就是文件名? python中argc是用什么实现的? 概念解释 argc:argument counter,命令行参数个数 argv:argument vector,命令行参数向量(内容) 通过代码理解含义 创建一个文件arg_exam.py,其中内容如下: # argv import sys for i in sys.argv: print i # argc argc = len(sys.argv) print argc 在shell中运

  • Vue中util的工具函数实例详解

    Vue中util的工具函数,下面通过实例代码给大家介绍的非常详细,具体代码如下所示: // 防抖函数 function debounce (fn, wait) { let t return () => { let context = this let args = arguments if (t) clearTimeout(t) t = setTimeout(() => { fn.apply(context, args) }, wait) } } function flatten (arr)

随机推荐