pytorch的梯度计算以及backward方法详解

基础知识

tensors:

tensor在pytorch里面是一个n维数组。我们可以通过指定参数reuqires_grad=True来建立一个反向传播图,从而能够计算梯度。在pytorch中一般叫做dynamic computation graph(DCG)——即动态计算图。

import torch
import numpy as np

# 方式一
x = torch.randn(2,2, requires_grad=True)

# 方式二
x = torch.autograd.Variable(torch.Tensor([2,3]), requires_grad=True)

#方式三
x = torch.tensor([2,3], requires_grad=True, dtype=torch.float64)

# 方式四
x = np.array([1,2,3] ,dtype=np.float64)
x = torch.from_numpy(x)
x.requires_grad = True
# 或者 x.requires_grad_(True)

note1:在pytorch中,只有浮点类型的数才有梯度,故在方法四中指定np数组的类型为float类型。为什么torch.Tensor中不需要呢,可以通过以下代码验证

import torch
import numpy as np

a = torch.Tensor([2,3])
print(a.dtype) # torch.floaat32

b = torch.tensor([2,3])
print(b.dtype) # torch.int64

 c = np.array(2,3)
 print(c.dtype) # int64

note2pytorch中tensor与Tensor的区别是什么?这两个看起来如此相似。

首先,torch.Tensor是一个类,所有的tensor都是Tensor的一个实例;而torch.tensor是一个函数。这也说明了为什么使用torch.Tensor()没有问题而torch.tensor()却有问题。

其次,torch.tensor主要是将一个data封装成tensor,并且可以指定requires_grad。

torch.tensor(data,dtype=None,device=None,requires_grad=False) - > Tensor

最后,我们更多地使用torch.tensor,我们可以通过使用torch.tensor(())来达到与torch.Tensor()同样的效果。

具体可参考torch.tensor与torch.Tensor的区别

Dynamic Computational graph

我们来看一个计算图

我们 来看一个计算图 解释一下各个属性的含义,

data: 变量中存储的值,如x中存储着1,y中存储着2,z中存储着3

requires_grad:该变量有两个值,True 或者 False,如果为True,则加入到反向传播图中参与计算。

grad:该属性存储着相关的梯度值。当requires_grad为False时,该属性为None。即使requires_grad为True,也必须在调用其他节点的backward()之后,该变量的grad才会保存相关的梯度值。否则为None

grad_fn:表示用于计算梯度的函数。

is_leaf:为True或者False,表示该节点是否为叶子节点。

当调用backward函数时,只有requires_grad为true以及is_leaf为true的节点才会被计算梯度,即grad属性才会被赋予值。

梯度计算

examples

运算结果变量的requires_grad取决于输入变量。例如:当变量z的requires_grad属性为True时,为了求得z的梯度,那么变量b的requires_grad就必须为true了,而变量x,y,a的requires_grad属性都为False。

将事先创建的变量,如x、y、z称为创建变量;像a、b这样由其他变量运算得到的称为结果变量。

from torch.autograd import Variable

x = Variable(torch.randn(2,2))
y = Variable(torch.randn(2,2))
z = Variable(torch.randn(2,2), requires_grad=True)

a = x+y
b = a+z

print(x.requires_grad, y.requires_grad, z.requires_grad) # False, False, True
print(a.requires_grad, b.requires_grad) # False, True

print(x.requires_grad) # True
print(a.requires_grad) # True

调用backward()计算梯度

import torch as t
from torch.autograd import Variable as v

a = v(t.FloatTensor([2, 3]), requires_grad=True)
b = a + 3
c = b * b * 3
out = c.mean()
out.backward(retain_graph=True) # 这里可以不带参数,默认值为‘1',由于下面我们还要求导,故加上retain_graph=True选项

print(a.grad) # tensor([15., 18.])

backward中的gradient参数使用

a. 最后的结果变量为标量(scalar)

如第二个例子,通过调用out.backward()实现对a的求导,这里默认调用了out.backward(gradient=None)或者指定为out.backward(gradient=torch.Tensor([1.0])

b. 最后的结果变量为向量(vector)

import torch
from torch.autograd import Variable as V

m = V(torch.FloatTensor([2, 3]), requires_grad=True) # 注意这里有两层括号,非标量
n = V(torch.zeros(2))
n[0] = m[0] ** 2
n[1] = m[1] ** 3
n.backward(gradient=torch.Tensor([1,1]), retain_graph=True)
print(m.grad)

结果为:

tensor([ 4., 27.])

如果使用n.backward()的话,那么就会报如下的错:RuntimeError: grad can be implicitly created only for scalar outputs

注意:这里的gradient的维度必须与n的维度相同。其中的原理如下:

在执行z.backward(gradient)的时候,如果z不是一个标量,那么先构造一个标量的值:L = torch.sum(z*gradient),再计算关于L对各个leaf Variable的梯度。

以上这篇pytorch的梯度计算以及backward方法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Pytorch中accuracy和loss的计算知识点总结

    这几天关于accuracy和loss的计算有一些疑惑,原来是自己还没有弄清楚. 给出实例 def train(train_loader, model, criteon, optimizer, epoch): train_loss = 0 train_acc = 0 num_correct= 0 for step, (x,y) in enumerate(train_loader): # x: [b, 3, 224, 224], y: [b] x, y = x.to(device), y.to(de

  • 解决torch.autograd.backward中的参数问题

    torch.autograd.backward(variables, grad_variables=None, retain_graph=None, create_graph=False) 给定图的叶子节点variables, 计算图中变量的梯度和. 计算图可以通过链式法则求导.如果variables中的任何一个variable是 非标量(non-scalar)的,且requires_grad=True.那么此函数需要指定grad_variables,它的长度应该和variables的长度匹配,

  • pytorch中的自定义反向传播,求导实例

    pytorch中自定义backward()函数.在图像处理过程中,我们有时候会使用自己定义的算法处理图像,这些算法多是基于numpy或者scipy等包. 那么如何将自定义算法的梯度加入到pytorch的计算图中,能使用Loss.backward()操作自动求导并优化呢.下面的代码展示了这个功能` import torch import numpy as np from PIL import Image from torch.autograd import gradcheck class Bicu

  • pytorch的梯度计算以及backward方法详解

    基础知识 tensors: tensor在pytorch里面是一个n维数组.我们可以通过指定参数reuqires_grad=True来建立一个反向传播图,从而能够计算梯度.在pytorch中一般叫做dynamic computation graph(DCG)--即动态计算图. import torch import numpy as np # 方式一 x = torch.randn(2,2, requires_grad=True) # 方式二 x = torch.autograd.Variabl

  • pytorch对可变长度序列的处理方法详解

    主要是用函数torch.nn.utils.rnn.PackedSequence()和torch.nn.utils.rnn.pack_padded_sequence()以及torch.nn.utils.rnn.pad_packed_sequence()来进行的,分别来看看这三个函数的用法. 1.torch.nn.utils.rnn.PackedSequence() NOTE: 这个类的实例不能手动创建.它们只能被 pack_padded_sequence() 实例化. PackedSequence

  • 利用Pytorch实现获取特征图的方法详解

    目录 简单加载官方预训练模型 图片预处理 提取单个特征图 提取多个特征图 简单加载官方预训练模型 torchvision.models预定义了很多公开的模型结构 如果pretrained参数设置为False,那么仅仅设定模型结构:如果设置为True,那么会启动一个下载流程,下载预训练参数 如果只想调用模型,不想训练,那么设置model.eval()和model.requires_grad_(False) 想查看模型参数可以使用modules和named_modules,其中named_modul

  • 在php和MySql中计算时间差的方法详解

    在php中计算时间差有时候是件麻烦的事!不过只要你掌握了日期时间函数的用法那这些也就变的简单了. 最近在研究自己爱围脖的时候就要计算到恋爱天数,这需要php根据每天的日期进行计算,下面就来谈谈实现这种日期计算的几种方法: (1) 如果有数据库就很容易了!若是MSSQL可以使用触发器!用专门计算日期差的函数datediff()便可!若是MYSQL那就用两个日期字段的差值计算的计算结果保存在另一个数值型字段中!用时调用便可! (2)如果没有数据库,那就得完全用php的时间日期函数! 下面主要说明之:

  • pytorch模型转onnx模型的方法详解

    目录 学习目标 学习大纲 学习内容 1 . pytorch 转 onnx 2 . 运行onnx模型 3.onnx模型输出与pytorch模型比对 总结 学习目标 1.掌握pytorch模型转换到onnx模型 2.顺利运行onnx模型 3.比对onnx模型和pytorch模型的输出结果 学习大纲 pytorch模型转换onnx模型 运行onnx模型 onnx模型输出与pytorch模型比对 学习内容 前提条件:需要安装onnx 和 onnxruntime,可以通过 pip install onnx

  • 对pytorch中的梯度更新方法详解

    背景 使用pytorch时,有一个yolov3的bug,我认为涉及到学习率的调整.收集到tencent yolov3和mxnet开源的yolov3,两个优化器中的学习率设置不一样,而且使用GPU数目和batch的更新也不太一样.据此,我简单的了解了下pytorch的权重梯度的更新策略,看看能否一窥究竟. 对代码说明 共三个实验,分布写在代码中的(一)(二)(三)三个地方.运行实验时注释掉其他两个 实验及其结果 实验(三): 不使用zero_grad()时,grad累加在一起,官网是使用accum

  • Vue计算属性与监视属性实现方法详解

    目录 一.计算属性 1.插值语法实现 2.通过方法实现 3.通过计算属性 二.监视属性 三.深度监视 一.计算属性 在开发中,可以有这样的需求,在属性(date)中,有fistName和lastName两个属性,需要将两个属性拼接起来,这种需求也很简单,有以下实现方式 1.插值语法实现 直接在body中将两个数据拼接 <div id="root"> 姓:<input type="text" v-model="fistName"&

  • Pytorch在NLP中的简单应用详解

    因为之前在项目中一直使用Tensorflow,最近需要处理NLP问题,对Pytorch框架还比较陌生,所以特地再学习一下pytorch在自然语言处理问题中的简单使用,这里做一个记录. 一.Pytorch基础 首先,第一步是导入pytorch的一系列包 import torch import torch.autograd as autograd #Autograd为Tensor所有操作提供自动求导方法 import torch.nn as nn import torch.nn.functional

  • PyTorch快速搭建神经网络及其保存提取方法详解

    有时候我们训练了一个模型, 希望保存它下次直接使用,不需要下次再花时间去训练 ,本节我们来讲解一下PyTorch快速搭建神经网络及其保存提取方法详解 一.PyTorch快速搭建神经网络方法 先看实验代码: import torch import torch.nn.functional as F # 方法1,通过定义一个Net类来建立神经网络 class Net(torch.nn.Module): def __init__(self, n_feature, n_hidden, n_output):

  • Pytorch十九种损失函数的使用详解

    损失函数通过torch.nn包实现, 1 基本用法 criterion = LossCriterion() #构造函数有自己的参数 loss = criterion(x, y) #调用标准时也有参数 2 损失函数 2-1 L1范数损失 L1Loss 计算 output 和 target 之差的绝对值. torch.nn.L1Loss(reduction='mean') 参数: reduction-三个值,none: 不使用约简:mean:返回loss和的平均值: sum:返回loss的和.默认:

随机推荐