python中pd.cut()与pd.qcut()的对比及示例

目录
  • 1、pd.cut()
  • 2、pd.qcut()
  • 3、pd.cut() v.s. pd.qcut()

1、pd.cut()

用于将数据值按照值本身进行分段并排序到 bins 中。
参数包含:x, bins, right, include_lowest, labels, retbins, precision

x :被划分的数组
bins :被划分的区间/区间数

  • - ① 当 bins 为整数时,表示数组 x 被划分为多少个等间距的区间;
  • - ② 当 bins 为序列时,表示数组 x 将被划分在该指定序列中,若不在则输出 NaN;
# x = [1,2,3,5,3,4,1],  bins = 3
[In ] pd.cut(np.array([1,2,3,5,3,4,1]),3)  
[Out] [(0.996, 2.333], (0.996, 2.333], (2.333, 3.667], (3.667, 5.0], (2.333, 3.667], (3.667, 5.0], (0.996, 2.333]]
      Categories (3, interval[float64]): [(0.996, 2.333] < (2.333, 3.667] < (3.667, 5.0]]

# x = [1,2,3,5,3,4,1],  bins = [1,2,3]
[In ] pd.cut(np.array([1,2,3,5,3,4,1]),[1,2,3])
[Out] [NaN, (1.0, 2.0], (2.0, 3.0], NaN, (2.0, 3.0], NaN, NaN]
      Categories (2, interval[int64]): [(1, 2] < (2, 3]]

right :是否包含右端点,默认为 True;
include_lowest :是否包含左端点,默认为 False;

# x = [1,2,3,5,3,4,1],  bins = [1,2,3], 默认不包含左端点 1,默认包含右端点 3
[In ] pd.cut(np.array([1,2,3,5,3,4,1]),[1,2,3])
[Out] [NaN, (1.0, 2.0], (2.0, 3.0], NaN, (2.0, 3.0], NaN, NaN]
      Categories (2, interval[int64]): [(1, 2] < (2, 3]]

# x = [1,2,3,5,3,4,1],  bins = [1,2,3], 设置包含左端点 1,设置包含右端点 3
[In ] pd.cut(np.array([1,2,3,5,3,4,1]),[1,2,3],include_lowest=True,right=False)
[Out] [[1.0, 2.0), [2.0, 3.0), NaN, NaN, NaN, NaN, [1.0, 2.0)]
      Categories (2, interval[int64]): [[1, 2) < [2, 3)]

labels :是否用标记来替代返回的 bins,默认为 False,如需标记,标记数需与 bins 数一致,并为 labels 赋值一组列表;

# x = [1,2,3,5,3,4,1],  bins = 3, 设置用指定标签 ['A','B','C'] 返回序列
[In ] pd.cut(np.array([1,2,3,5,3,4,1]),3,labels=['A','B','C'])
[Out] [A, A, B, C, B, C, A]
      Categories (3, object): [A < B < C]

retbins : 是否返回间距 bins,默认为 False,仅返回 x 中每个值对应的 bin 的列表,若 retbins = True,则返回 bin 的列表及对应的 bins。

# x = [1,2,3,5,3,4,1],  bins = 3, 设置一并返回对应 bins 序列
[In ] pd.cut(np.array([1,2,3,5,3,4,1]),3,retbins=True)
[Out] ([(0.996, 2.333], (0.996, 2.333], (2.333, 3.667], (3.667, 5.0], (2.333, 3.667], (3.667, 5.0], (0.996, 2.333]]
      Categories (3, interval[float64]): [(0.996, 2.333] < (2.333, 3.667] < (3.667, 5.0]],
      array([0.996     , 2.33333333, 3.66666667, 5.        ]))

precision : 精度,区间边界值保留的小数点位数

# x = [1,2,3,5,3,4,1],  bins = 3, 精度为2
[In ] pd.cut(np.array([1,2,3,5,3,4,1]),3,precision=2)
[Out] [(1.0, 2.33], (1.0, 2.33], (2.33, 3.67], (3.67, 5.0], (2.33, 3.67], (3.67, 5.0], (1.0, 2.33]]
      Categories (3, interval[float64]): [(1.0, 2.33] < (2.33, 3.67] < (3.67, 5.0]]

2、pd.qcut()

基于分位数的离散化功能。 根据等级或基于样本分位数(或者说基于样本值落在区间的频率),将变量分离为相等大小的桶。

参数包含:x, q, labels, retbins, precision, duplicates

  • x、labels、retbins、precision 与 pd.cut() 中参数用法一致;
  • q : 将序列 x 划分为 q 个区间,使落在每个区间的值的数量一致;
  • duplicates :重复值处理,默认为 duplicates = ‘raise’,表示不忽略重复值。如需忽略 x 中的重复值,可指定 duplicates = ‘drop’。

3、pd.cut() v.s. pd.qcut()

  • pd.cut() 将指定序列 x,按指定数量等间距的划分(根据值本身而不是这些值的频率选择均匀分布的bins),或按照指定间距划分
  • pd.qcut() 将指定序列 x,划分为 q 个区间,使落在每个区间的记录数一致
[In] ll = [1,2,3,5,3,4,1,2]
     print('- - - pd.cut()示例1 - - -')
     print(pd.cut(ll, 4, precision=2).value_counts())
     print('- - - pd.cut()示例2 - - -')
     print(pd.cut(ll, [1,2,4], precision=2).value_counts())
     print('- - - pd.qcut()示例 - - -')
     print(pd.qcut(ll, 4, precision=2).value_counts())

[Out] - - - pd.cut()示例1 - - -
     (1.0, 2.0]    4
     (2.0, 3.0]    2
     (3.0, 4.0]    1
     (4.0, 5.0]    1
     dtype: int64
     - - - pd.cut()示例2 - - -
     (1, 2]    2
     (2, 4]    3
     dtype: int64
     - - - pd.qcut()示例 - - -
     (0.99, 1.75]    2
     (1.75, 2.5]     2
     (2.5, 3.25]     2
     (3.25, 5.0]     2
     dtype: int64

到此这篇关于python中pd.cut()与pd.qcut()的对比及示例的文章就介绍到这了,更多相关python pd.cut()与pd.qcut()内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python利用pd.cut()和pd.qcut()对数据进行分箱操作

    目录 1.cut()可以实现类似于对成绩进行优良统计的功能,来看代码示例. 2.qcut()可以生成指定的箱子数,然后使每个箱子都具有相同数量的数据 1.cut()可以实现类似于对成绩进行优良统计的功能,来看代码示例. 假如我们有一组学生成绩,我们需要将这些成绩分为不及格(0-59).及格(60-70).良(71-85).优(86-100)这几组.这时候可以用到cut() import numpy as np import pandas as pd # 我们先给 scores传入30个从0到10

  • python中pd.cut()与pd.qcut()的对比及示例

    目录 1.pd.cut() 2.pd.qcut() 3.pd.cut() v.s. pd.qcut() 1.pd.cut() 用于将数据值按照值本身进行分段并排序到 bins 中.参数包含:x, bins, right, include_lowest, labels, retbins, precision x :被划分的数组bins :被划分的区间/区间数 - ① 当 bins 为整数时,表示数组 x 被划分为多少个等间距的区间: - ② 当 bins 为序列时,表示数组 x 将被划分在该指定序

  • Python中一个for循环循环多个变量的示例

    首先,熟悉一个函数zip,如下是使用help(zip)对zip的解释. Help on built-in function zip in module __builtin__: zip(...) zip(seq1 [, seq2 [...]]) -> [(seq1[0], seq2[0] ...), (...)] Return a list of tuples, where each tuple contains the i-th element from each of the argumen

  • 在python中实现同行输入/接收多个数据的示例

    在使用python去AC题时总会遇到这样的问题,题目要求同行输入一组数据,但是你使用input时却不能做到,导致不断的CE,这个时候怎么样来解决的这个问题呢? 很简单,只需要使用input().split(' ')就可以了 例如:最简单的求a+b的例子,写成下面的形式就可以单行输入两个数据了 a , b = input ().split(' ') #以空格为间隔符 print (a+b) 结果如下: 注意input的输入机制,他是把所有输入都按照字符串输入的所以这样输出的a+b是按字符串形式直接

  • python中列表推导式与生成器表达式对比详解

    目录 概述 列表推导式 生成器表达式 使用场景选择 参考 总结 概述 Python中的列表推倒式(List Comprehension) 和 生成器表达式(Generator Expression)是两种很相似的表达式,但含义却不大不同,这里做一个对比. 列表推导式 列表推导式是比较常用的技术,能将本来需要for loop 和 if else 语句的情况简化成一条指令,最终得到一个列表对象: even = [e for e in range(10) if e % 2 == 0] 具体细节不过多展

  • Python中使用urllib2模块编写爬虫的简单上手示例

    提起python做网络爬虫就不得不说到强大的组件urllib2.在python中正是使用urllib2这个组件来抓取网页的.urllib2是Python的一个获取URLs(Uniform Resource Locators)的组件.它以urlopen函数的形式提供了一个非常简单的接口.通过下面的代码简单感受一下urllib2的功能: import urllib2 response = urllib2.urlopen('http://www.baidu.com/') html = response

  • Python中的数据对象持久化存储模块pickle的使用示例

    Python中可以使用 pickle 模块将对象转化为文件保存在磁盘上,在需要的时候再读取并还原.具体用法如下: pickle是Python库中常用的序列化工具,可以将内存对象以文本或二进制格式导出为字符串,或者写入文档.后续可以从字符或文档中还原为内存对象.新版本的Python中用c重新实现了一遍,叫cPickle,性能更高. 下面的代码演示了pickle库的常用接口用法,非常简单: import cPickle as pickle # dumps and loads # 将内存对象dump为

  • Python中list查询及所需时间计算操作示例

    本文实例讲述了Python中list查询及所需时间计算操作.分享给大家供大家参考,具体如下: # -*-coding=utf-8 -*- #! python2 #filename: list_query #date: 2018-03-25 #author: guosw import time def cost_time(fun): def cost(*args,**kwargs): stime = time.time() x = fun(*args,**kwargs) etime = time.

  • Python中shutil模块的常用文件操作函数用法示例

    os模块提供了对目录或者文件的新建/删除/查看文件属性,还提供了对文件以及目录的路径操作.比如说:绝对路径,父目录--  但是,os文件的操作还应该包含移动 复制  打包 压缩 解压等操作,这些os模块都没有提供. 而本文所讲的shutil则就是对os中文件操作的补充.--移动 复制  打包 压缩 解压, shutil函数功能: 1  shutil.copyfileobj(fsrc, fdst[, length=16*1024]) copy文件内容到另一个文件,可以copy指定大小的内容 先来看

  • Python中使用第三方库xlrd来写入Excel文件示例

    继上一篇文章使用xlrd来读Excel之后,这一篇文章就来介绍下,如何来写Excel,写Excel我们需要使用第三方库xlwt,和xlrd一样,xlrd表示read xls,xlwt表示write xls,同样目前版本只支持97-03版本的Excel.xlwt下载:xlwt 0.7.4 安装xlwt 安装方式一样是python setup.py install就可以了,或者直接解压到你的工程目录中. API介绍 获取一个xls实例 复制代码 代码如下: xls = ExcelWrite.Work

随机推荐