解析C++11的std::ref、std::cref源码

1、源码准备

本文是基于gcc-4.9.0的源代码进行分析,std::ref和std::cref是C++11才加入标准的,所以低版本的gcc源码是没有这两个的,建议选择4.9.0或更新的版本去学习,不同版本的gcc源码差异应该不小,但是原理和设计思想的一样的,下面给出源码下载地址
http://ftp.gnu.org/gnu/gcc

2、std::ref和std::cref的作用

C++本身就有引用(&),那为什么C++11又引入了std::ref(或者std::cref)呢?
主要是考虑函数式编程(如std::bind)在使用时,是对参数直接拷贝,而不是引用。下面是一个简单的例子:

#include <functional>
#include <iostream>
void fun(int& n1, int& n2, const int& n3)
{
    std::cout << "In function: " << n1 << ' ' << n2 << ' ' << n3 << '\n';
    ++n1; // increments the copy of n1 stored in the function object
    ++n2; // increments the main()'s n2
    // ++n3; // compile error
    std::cout << "In function end: " << n1 << ' ' << n2 << ' ' << n3 << '\n';
}

int main()
{
    int n1 = 1, n2 = 1, n3 = 1;
    std::function<void()> fff = std::bind(f, n1, std::ref(n2), std::cref(n3));
    std::cout << "Before function: " << n1 << ' ' << n2 << ' ' << n3 << '\n';
    fff();
    std::cout << "After function: " << n1 << ' ' << n2 << ' ' << n3 << '\n';
}

运行结果:

Before function: 1 1 1
In function: 1 1 1
In function end: 2 2 1
After function: 1 2 1

从上面的例子中可以看到,执行完fff,n1的值仍然是1,n2的值已经改变,这说明std::bind使用的是参数的拷贝而不是引用,这也就是为什么C++11要引入std::ref和std::cref的原因了,接下来分析std::ref的实现(std::cref不作分析,因为和std::ref的位移差别只是引用变成了const而已)

3、std::ref相关源码解析

3.1、std::ref解析

std::ref位于libstdc++-v3\include\std\functional中

template<typename _Tp>
inline reference_wrapper<_Tp> ref(_Tp& __t) noexcept
{ return reference_wrapper<_Tp>(__t); }

template<typename _Tp>
void ref(const _Tp&&) = delete;

template<typename _Tp>
inline reference_wrapper<_Tp> ref(reference_wrapper<_Tp> __t) noexcept
{ return ref(__t.get()); }

从源代码中可以看出:

  • std::ref是一个模板函数,返回值是模板类std::reference_wrapper
  • 从第二个函数可以看到,std::ref不允许传递右值引用参数,即无法包装右值引用传递的值
  • std::ref的传入参数可以是一个普通的引用,也可以是另外一个std::reference_wrapper对象,接下来分析std::reference_wrapper的实现

3.2、std::reference_wrapper解析

std::reference_wrapper位于libstdc++-v3\include\std\functional中

template<typename _Tp>
class reference_wrapper : public _Reference_wrapper_base<typename remove_cv<_Tp>::type>
{
    _Tp* _M_data;

public:
    typedef _Tp type;

    reference_wrapper(_Tp& __indata) noexcept
        :_M_data(std::__addressof(__indata))
    {
    }

    reference_wrapper(_Tp&&) = delete;

    reference_wrapper(const reference_wrapper<_Tp>& __inref) noexcept
        :_M_data(__inref._M_data)
    {
    }

    reference_wrapper& operator=(const reference_wrapper<_Tp>& __inref) noexcept
    {
        _M_data = __inref._M_data;
        return *this;
    }

    operator _Tp&() const noexcept
    { return this->get(); }

    _Tp& get() const noexcept
    { return *_M_data; }

    template<typename... _Args>
    typename result_of<_Tp&(_Args&&...)>::type
    operator()(_Args&&... __args) const
    {
        return __invoke(get(), std::forward<_Args>(__args)...);
    }
};

从源代码中可以获得以下信息:

  • 该类继承于std::_Reference_wrapper_base
  • 有一个类成员_M_data,类型为所引用类型的指针
  • 第一个构造函数通过调用std::__addressof函数,获得了指向引用参数的指针,并赋值给了_M_data(这也是为什么不支持右值引用的原因,因为取不到对应的地址),std::__addressof实现如下:
// 位于**libstdc++-v3\include\bits\move.h**中
// 借助reinterpret_cast能任意转换类型的特性来将<code>_Tp&</code>转为<code>_Tp*</code>
//(转换过程编译器不保证正确,要由程序员来保证转换过程不出错,虽然标准库用了很多这样的特殊技巧,但是实际开发中这些少用为好)
template<typename _Tp>
inline _Tp* __addressof(_Tp& __r) _GLIBCXX_NOEXCEPT
{
    return reinterpret_cast<_Tp*>(&const_cast<char&>(reinterpret_cast<const volatile char&>(__r)));
}
  • 拷贝构造函数和赋值函数就只是简单地将_M_data的值进行传递而已了
  • 其余方法就是为了让std::reference_wrapper展现出和普通的引用一样的效果而进行的运算符重载啥的,这里就不赘述了,实现比较简单,大家可以自己看一看具体的代码

3.3、std::remove_cv解析

std::remove_cv位于libstdc+±v3\include\std\type_traits中

分析std::_Reference_wrapper_base之前先看一下std::remove_cv的实现
其实从std::remove_cv存在于type_traits文件这一点就可以大致推断出,std::remove_cv使用了模板元技术,模板元的主要思想为:利用模板特化机制实现编译期条件选择结构,利用递归模板实现编译期循环结构,模板元程序则由编译器在编译器解释运行,但是其也有明显的优缺点,优点是运行时速度极快,缺点是程序很难看懂,容易劝退初学者,这里不对其做深入分析,知道是这样一个东西就行,有兴趣的可以去查阅专业的C++书籍去了解其中的奥秘
源代码如下,作用是将模板_Tp的const和voaltile属性分离,这样的话使用::value就可以得到没有const、volatile的类型了

/// remove_const
template<typename _Tp>
struct remove_const
{ typedef _Tp    type; };

template<typename _Tp>
struct remove_const<_Tp const>
{ typedef _Tp    type; };

/// remove_volatile
template<typename _Tp>
struct remove_volatile
{ typedef _Tp    type; };

template<typename _Tp>
struct remove_volatile<_Tp volatile>
{ typedef _Tp    type; };

/// remove_cv
template<typename _Tp>
struct remove_cv
{
  typedef typename
  remove_const<typename remove_volatile<_Tp>::type>::type    type;
};

3.4、std::_Reference_wrapper_base解析

std::_Reference_wrapper_base位于libstdc++-v3\include\std\functional中

template<typename _Tp>
struct _Reference_wrapper_base
    :_Reference_wrapper_base_impl<
     __has_argument_type<_Tp>::value,
     __has_first_argument_type<_Tp>::value
     && __has_second_argument_type<_Tp>::value,
     _Tp>
{};

template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res(_T1)> : unary_function<_T1, _Res>
{};

template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res(_T1) const> : unary_function<_T1, _Res>
{};

template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res(_T1) volatile> : unary_function<_T1, _Res>
{};

template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res(_T1) const volatile> : unary_function<_T1, _Res>
{};

// - a function type (binary)
template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res(_T1, _T2)> : binary_function<_T1, _T2, _Res>
{};

template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res(_T1, _T2) const> : binary_function<_T1, _T2, _Res>
{};

template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res(_T1, _T2) volatile> : binary_function<_T1, _T2, _Res>
{};

template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res(_T1, _T2) const volatile> : binary_function<_T1, _T2, _Res>
{};

template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res(*)(_T1)> : unary_function<_T1, _Res>
{};

template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res(*)(_T1, _T2)> : binary_function<_T1, _T2, _Res>
{};

template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res (_T1::*)()> : unary_function<_T1*, _Res>
{};

template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res (_T1::*)(_T2)> : binary_function<_T1*, _T2, _Res>
{};

template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res (_T1::*)() const> : unary_function<const _T1*, _Res>
{};

template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const> : binary_function<const _T1*, _T2, _Res>
{};

template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res (_T1::*)() volatile> : unary_function<volatile _T1*, _Res>
{};

template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res (_T1::*)(_T2) volatile> : binary_function<volatile _T1*, _T2, _Res>
{};

template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res (_T1::*)() const volatile> : unary_function<const volatile _T1*, _Res>
{};

template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const volatile> : binary_function<const volatile _T1*, _T2, _Res>
{};

从代码中可以看出,std::_Reference_wrapper_base继承于std::unary_function或者std::binary_function,在实际编程中对std::reference_wrapper的作用不大,除非引用的是一个函数对象,所以在这里就不分析它的具体作用了,大家直接去查一下unary_function和binary_function是啥东西就行了

4、总结

std::ref和std::cref在函数式编程中的作用是非常大的,C++11后的源代码中多次使用到了它们。而std::ref和std::cref事实上是模板函数,返回值是一个std::reference_wrapper对象,而std::reference_wrapper虽然是一个对象,可是他却能展现出和普通引用类似的效果,这点和前一篇文章讲的智能指针如出一辙(事实上标准库大多是这样设计的,这也是运算符重载存在的一个重要意义)。当我们在函数式编程(如std::bind)中需要对参数进行引用传递时,只需要用std::ref或std::cref修饰该引用即可

到此这篇关于解析C++11的std::ref、std::cref源码的文章就介绍到这了,更多相关C++11 std::ref、std::cref 内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++11中的时间库std::chrono(引发关于时间的思考)

    前言 时间是宝贵的,我们无时无刻不在和时间打交道,这个任务明天下班前截止,你点的外卖还有5分钟才能送到,那个程序已经运行了整整48个小时,既然时间和我们联系这么紧密,我们总要定义一些术语来描述它,像前面说到的明天下班前.5分钟.48个小时都是对时间的描述,程序代码构建的程序世界也需要定义一些术语来描述时间. 今天要总结学习的是 std::chrono 库,它是 C++11 标准时从 boost 库中引入的,其实在 C++ 中还有一种 C 语言风格的时间管理体系,像我们常见的函数 time().c

  • C++11并发编程:多线程std::thread

    一:概述 C++11引入了thread类,大大降低了多线程使用的复杂度,原先使用多线程只能用系统的API,无法解决跨平台问题,一套代码平台移植,对应多线程代码也必须要修改.现在在C++11中只需使用语言层面的thread可以解决这个问题. 所需头文件<thread> 二:构造函数 1.默认构造函数 thread() noexcept 一个空的std::thread执行对象 2.初始化构造函数 template<class Fn, class... Args> explicit th

  • C++11中std::future的具体使用方法

    C++11中的std::future是一个模板类.std::future提供了一种用于访问异步操作结果的机制.std::future所引用的共享状态不能与任何其它异步返回的对象共享(与std::shared_future相反)( std::future references shared state that is not shared with any other asynchronous return objects (as opposed to std::shared_future)).一

  • C++11模板元编程-std::enable_if示例详解

    C++11中引入了std::enable_if函数,函数原型如下: template< bool B, class T = void > struct enable_if; 可能的函数实现: template<bool B, class T = void> struct enable_if {}; template<class T> struct enable_if<true, T> { typedef T type; }; 由上可知,只有当第一个模板参数为

  • C++11中std::declval的实现机制浅析

    本文主要给大家介绍了关于C++11中std::declval实现机制的相关内容,分享出来供大家参考学习,下面来一起看看详细的介绍: 在vs2013中,declval定义如下 template <_Ty> typenamea dd_rvalue_reference<_Ty>::type declval() _noexcept; 其中,add_rvalue_reference为一个traits,定义为 template <_Ty> struct add_rvalue_ref

  • C++11 std::shared_ptr总结与使用示例代码详解

    最近看代码,智能指针用的比较多,自己平时用的少,周末自己总结总结.方便后续使用. std::shared_ptr大概总结有以下几点: (1) 智能指针主要的用途就是方便资源的管理,自动释放没有指针引用的资源. (2) 使用引用计数来标识是否有多余指针指向该资源.(注意,shart_ptr本身指针会占1个引用) (3) 在赋值操作中, 原来资源的引用计数会减一,新指向的资源引用计数会加一. std::shared_ptr<Test> p1(new Test); std::shared_ptr&l

  • C++11 并发指南之std::thread 详解

    上一篇博客<C++11 并发指南一(C++11 多线程初探)>中只是提到了 std::thread 的基本用法,并给出了一个最简单的例子,本文将稍微详细地介绍 std::thread 的用法. std::thread 在 <thread> 头文件中声明,因此使用 std::thread 时需要包含 <thread> 头文件. std::thread 构造 default (1) thread() noexcept; initialization (2) template

  • C++11新特性std::make_tuple的使用

    std::tuple是C++ 11中引入的一个非常有用的结构,以前我们要返回一个包含不同数据类型的返回值,一般都需要自定义一个结构体或者通过函数的参数来返回,现在std::tuple就可以帮我们搞定. 1.引用头文件 #include <tuple> 2. Tuple初始化 std::tuple的初始化可以通过构造函数实现. // Creating and Initializing a tuple std::tuple<int, double, std::string> resul

  • C++11中std::async的使用详解

    C++11中的std::async是个模板函数.std::async异步调用函数,在某个时候以Args作为参数(可变长参数)调用Fn,无需等待Fn执行完成就可返回,返回结果是个std::future对象.Fn返回的值可通过std::future对象的get成员函数获取.一旦完成Fn的执行,共享状态将包含Fn返回的值并ready. std::async有两个版本: 1.无需显示指定启动策略,自动选择,因此启动策略是不确定的,可能是std::launch::async,也可能是std::launch

  • C++11中lambda、std::function和std:bind详解

    前言 在C++11新标准中,语言本身和标准库都增加了很多新内容,本文只涉及了一些皮毛.不过我相信这些新特性当中有一些,应该成为所有C++开发者的常规装备.本文主要介绍了C++11中lambda.std::function和std:bind,下面来一起看看详细的介绍吧. lambda 表达式 C++11中新增了lambda 表达式这一语言特性.lambda表达式可以让我们快速和便捷的创建一个"函数". 下面是lambda表达式的语法: [ capture-list ] { body }

随机推荐