教你利用R语言测试电脑的性能

利用R语言测试电脑的性能如何

同事新配了一个电脑,想用R语言编写一个程序,看一下电脑性能如何,让我写个代码测试一下。

我能怎么样,我也不懂如何测试电脑啊,那就计算一下矩阵的运算吧。因为我理解的电脑运行性能就是矩阵计算了。

编写代码

rm(list=ls())
set.seed(123)

# 设置矩阵的行数
n = 10000

# 生成一个矩阵
value = rnorm(n*n, 10,3)
mat = matrix(value,n,n)

# 测试电脑性能
system.time({
  # 矩阵求逆
  ainv = solve(mat)
})

# 测试电脑性能
system.time({
  # 矩阵相乘
  re = mat %*% t(mat)
})

代码解释

  • 首先把R中的变量清空
  • 设计随机种子数,生成的随机数就是一样的
  • 然后生成10000*10000的矩阵
  • 测试1:矩阵求逆
  • 测试2:矩阵相乘
  • 测试结果是运行时间。

个人电脑

我的个人电脑是这个样子滴:

  • 矩阵求逆运行了1011
  • 秒矩阵相乘运行了925
# 个人电脑,16G内存

# > # 测试电脑性能
#   > system.time({
#     +   # 矩阵求逆
#       +   ainv = solve(mat)
#       + })
# 用户    系统    流逝
# 1007.69    0.62 1011.49
# >
#   >
#   >
#   > # 测试电脑性能
#   > system.time({
#     +   # 矩阵相乘
#       +   re = mat %*% t(mat)
#       + })
# 用户   系统   流逝
# 915.02   0.75 925.86 

服务器对比

  • 矩阵求逆运行了6.4
  • 秒矩阵相乘运行了3.32
# 公司服务器测试结果
# > # 测试电脑性能
#   > system.time({
#     +   # 矩阵求逆
#       +   ainv = solve(mat)
#       + })
# 用户    系统    流逝
# 146.428  10.211   6.405
# > # 测试电脑性能
#   > system.time({
#     +   # 矩阵相乘
#       +   re = mat %*% t(mat)
#       + })
# 用户   系统   流逝
# 79.945 10.179  3.323 

1011s VS 4s!!!

货比货要扔……

补一刀

同事发过来一个CPU的天梯,我看了自己所在的位置,默默的关上了电脑:

到此这篇关于利用R语言测试电脑的性能如何的文章就介绍到这了,更多相关R语言性能测试内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • R语言数据框中的负索引介绍

    以R语言自带的mtcars数据框为例: 这是原始的mtcars数据: 这里只列出了前面几行数据. 然后负索引mtcars[,-2:-3],得到的结果 删除了第二列和第三列数据 所以R语言数据框中的负索引是指删除数据框中对应的列(或者行) ps:这和Python里面的规则好像不太一样,Python里的负索引好像是指倒数第几列(或者第几行),这里这两个软件区别还挺大的~~写个笔记提醒一下自己~ 补充:R语言中的负整数索引 看代码吧~ > x<-matrix(c(1,2,3,4,5,6,7,8,9)

  • R语言ggplot2之图例的设置

    引言 图例的设置包括移除图例.改变图例的位置.改变标签的顺序.改变图例的标题等. 移除图例 有时候你想移除图例,使用 guides(). library(ggplot2) p <- ggplot(PlantGrowth, aes(x=group, y=weight, fill=group)) + geom_boxplot() p + guides(fill=FALSE) 改变图例的位置 我们可以用theme(legend.position=-)将图例移到图表的上方.下方.左边和右边. p <-

  • R语言-解决处理矩阵遇到内存不足的问题

    如下: Error : cannot allocate vector of size X Gb 类似于这种问题的可能处理办法: 1. 可以用matrix尽量不要用data frame; 2. 可以用integer matrix尽量不要用 double matrix; 3. 对于大量运算后最好加上一个gc(), 强制R语言回收内存: 4. 对于大矩阵而言用bigmemory包,可以将大矩阵放到临时文件中,不占用内存. 补充:R语言之内存管理 在处理大型数据过程中,R语言的内存管理就显得十分重要,以

  • R语言 查找满足条件的数并获取索引的操作

    1.在R语言中,如何找到满足条件的数呢? 例如给定一个向量c2,要求找到数值大于0的数: > c2 [1] 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.09 0.20 0.09 0.08 0.14 0.14 0.23 [15] 0.08 0.06 0.12 0.20 0.14 0.11 0.20 0.14 0.17 0.15 0.18 0.15 0.20 0.12 [29] 0.23 0.08 0.12 0.08 0.23 0.12 0.08 0.17 0.18 0

  • R语言:数据筛选match的使用详解

    数据筛选是在分析中最常用的步骤,如微生物组分析中,你的OTU表.实验设计.物种注释之间都要不断筛选,来进行数据对齐,或局部分析. 今天来详解一下此函数的用法. match match:匹配两个向量,返回x中存在的返回索引或TRUE.FALSE match函数使用格式有如下两种: 第一种方便设置参数,返回x中元素在table中的位置 match(x, table, nomatch = NA_integer_, incomparables = NULL) 第二种简洁,返回x中每个元素在table中是

  • R语言中文本文件分割 符号 sep的用法

    一般情况下: csv 文件 sep = "," # 以逗号分割 txt 文件 sep = "\t" #以制表符分割 其他文件 sep = " " #以空格分割 具体情况,具体调整 sep= 文件中的字段分离符,用于文件数据文本的读取和保存过程中指定分割符号. 补充:用R语言把超大文本文件拆分成几个小文本文件 近一段时间一直在研究一些医院的数据. 前两天遇到一个尴尬:想打开一个仅有3G左右的文本文件(有时候必须要打开,直接传到数据库满足不了需求),

  • R语言 install.packages 无法读取索引的解决方案

    问题描述 在公司的Centos服务器上安装R的包,总是安装不成功,然后有如下提醒: Warning: 无法在貯藏處https://mirrors.ustc.edu.cn/CRAN/src/contrib中读写索引 Warning message: package 'DBI' is not available (for R version 3.2.2) 问题修复 [更好的方案请直接看最后边PS] 执行下边这条命令,随便选几个源. setRepositories(addURLs = c(CRANxt

  • 教你利用R语言测试电脑的性能

    利用R语言测试电脑的性能如何 同事新配了一个电脑,想用R语言编写一个程序,看一下电脑性能如何,让我写个代码测试一下. 我能怎么样,我也不懂如何测试电脑啊,那就计算一下矩阵的运算吧.因为我理解的电脑运行性能就是矩阵计算了. 编写代码 rm(list=ls()) set.seed(123) # 设置矩阵的行数 n = 10000 # 生成一个矩阵 value = rnorm(n*n, 10,3) mat = matrix(value,n,n) # 测试电脑性能 system.time({ # 矩阵求

  • 利用R语言解压与压缩.tar.gz.zip等格式文件

    目录 .zip .tar.gz .gz 与 .bz2 1) 直接解压 2) 直接读取 参考 最近尝试用 R 对一些文件进行批量的解压与压缩,这里记录一些常用的解压与压缩的方法. 由于解压与压缩是对称的两种方法,这里我们着重以对文件的解压为例,分不同的格式进行讲解. .zip 压缩:zip() 解压:unzip() 若要压缩文件,就直接在 zip() 函数的第一个参数里面输入压缩后的文件名,第二个参数输入压缩前的文件名. 而解压文件就更简单了,直接利用 unzip() 里面加上需要解压的文件名称即

  • 利用R语言绘制时间序列图的操作

    数据 GDP.csv文件,存储1879~2019年河南省GDP数据 绘图 # 读取数据, 首先将excel 格式的转化为 csv 格式 再读取 h <- read.table(file = "C:/Users/PYY/Desktop/GDP.csv",sep = ",",header = T) # 转化为时间序列数据 GDP=ts(h$GDP,start = 1978,frequency = 1) # 绘图 plot(GDP) 补充:ts函数 ts() 函数:

  • R语言通过parallel包实现多线程运行方式

    总的来说,R的运算速度不算快,不过类似并行运算之类的改进可以提高运算的性能.下面非常简要地介绍如何利用R语言进行并行运算 library(parallel) cl.cores <- detectCores() cl <- makeCluster(cl.cores) detectCores( )检查当前电脑可用核数. makeCluster(cl.cores)使用刚才检测的核并行运算.R-Doc里这样描述makeCluster函数:Creates a set of copies of R run

  • R语言实现LASSO回归的方法

    Lasso回归又称为套索回归,是Robert Tibshirani于1996年提出的一种新的变量选择技术.Lasso是一种收缩估计方法,其基本思想是在回归系数的绝对值之和小于一个常数的约束条件下,使残差平方和最小化,从而能够产生某些严格等于0的回归系数,进一步得到可以解释的模型.R语言中有多个包可以实现Lasso回归,这里使用lars包实现. 1.利用lars函数实现lasso回归并可视化显示 x = as.matrix(data5[, 2:7]) #data5为自己的数据集 y = as.ma

  • R语言 数据集行列互换的技巧分享

    现在给大家介绍的数据处理技巧是长转宽,也就相当于Excel中的转置,不过用R语言实现的长转宽还有数据合并的功能,自然比Excel强大多了. 这里给大家介绍4个函数,其中melt().dcast()来自reshape2包,gather().spread()来自tidyr包 一.宽转长--melt().gather() mydata<-data.frame( name=c("store1","store2","store3","sto

  • R语言读取csv文件出错的解决方案

    今天在用R语言读取.csv文件的时候报错 Error in make.names(col.names, unique = TRUE) : invalid multibyte string 5 上网查了很久才知道原来是格式的问题(保存文件格式的编码不正确) 重新保存正确的格式就没有问题了~ 补充:R语言读取csv文件,第一列列名出现乱码的解决方法 在利用R语言读取csv文件时,第一列列名总是出现乱码,代码如下: setwd("E:\2.Model\4. Simulation") #设定文

  • R语言glmnet包lasso回归中分类变量的处理图文详解

    我们在既往文章<手把手教你使用R语言做LASSO 回归>中介绍了glmnet包进行lasso回归,后台不少粉丝发信息向我问到分类变量处理的问题,我后面查了一下资料之前文章分类变量没有处理,非常抱歉.现在来重新聊一聊分类变量的处理. 我们导入glmnet包的时候可以看到,还需要导入一个Matrix包,说明这个矩阵包很重要 按照glmnet包的原文如下: 就是告诉我们,除了Cox Model外,其他的表达都支持矩阵形式,在Cox Model的介绍中,函数样式为 说明我们应该把其他变量变为矩阵的形式

  • R语言利用loess如何去除某个变量对数据的影响详解

    R语言介绍 R语言是用于统计分析,图形表示和报告的编程语言和软件环境. R语言由Ross Ihaka和Robert Gentleman在新西兰奥克兰大学创建,目前由R语言开发核心团队开发. R语言的核心是解释计算机语言,其允许分支和循环以及使用函数的模块化编程. R语言允许与以C,C ++,.Net,Python或FORTRAN语言编写的过程集成以提高效率. R语言在GNU通用公共许可证下免费提供,并为各种操作系统(如Linux,Windows和Mac)提供预编译的二进制版本. R是一个在GNU

  • R语言利用plot()函数画图的基本用法

    plot()函数在R语言画图中位置十分重要,现在就对其具体用法做一个总结. 基本用法: plot(x=x轴数据,y=y轴数据,main="标题",sub="子标题",type="线型",xlab="x轴名称",ylab="y轴名称",xlim = c(x轴范围,x轴范围),ylim = c(y轴范围,y轴范围)) 示例代码为: plot(c(1:6),c(1:6),main="test"

随机推荐