R语言线性回归知识点总结

回归分析是一种非常广泛使用的统计工具,用于建立两个变量之间的关系模型。 这些变量之一称为预测变量,其值通过实验收集。 另一个变量称为响应变量,其值从预测变量派生。

在线性回归中,这两个变量通过方程相关,其中这两个变量的指数(幂)为1.数学上,线性关系表示当绘制为曲线图时的直线。 任何变量的指数不等于1的非线性关系将创建一条曲线。

线性回归的一般数学方程为

y = ax + b

以下是所使用的参数的描述

  • y是响应变量。
  • x是预测变量。
  • a和b被称为系数常数。

建立回归的步骤

回归的简单例子是当人的身高已知时预测人的体重。 为了做到这一点,我们需要有一个人的身高和体重之间的关系。

创建关系的步骤是

  • 进行收集高度和相应重量的观测值的样本的实验。
  • 使用R语言中的lm()函数创建关系模型。
  • 从创建的模型中找到系数,并使用这些创建数学方程
  • 获得关系模型的摘要以了解预测中的平均误差。 也称为残差。
  • 为了预测新人的体重,使用R中的predict()函数。

输入数据

下面是代表观察的样本数据

# Values of height
151, 174, 138, 186, 128, 136, 179, 163, 152, 131

# Values of weight.
63, 81, 56, 91, 47, 57, 76, 72, 62, 48

LM()函数

此函数创建预测变量和响应变量之间的关系模型。

语法

线性回归中lm()函数的基本语法是

lm(formula,data)

以下是所使用的参数的说明

  • 公式是表示x和y之间的关系的符号。
  • 数据是应用公式的向量。

创建关系模型并获取系数

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

# Apply the lm() function.
relation <- lm(y~x)

print(relation)

当我们执行上面的代码,它产生以下结果

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept)            x
  38.4551          0.6746

获取相关的摘要

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

# Apply the lm() function.
relation <- lm(y~x)

print(summary(relation))

当我们执行上面的代码,它产生以下结果

Call:
lm(formula = y ~ x)

Residuals:
    Min      1Q     Median      3Q     Max
-6.3002   1.6629  0.0412    1.8944  3.9775 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)38.45509    8.04901 4.778  0.00139 **
x             0.67461    0.05191  12.997 1.16e-06 ***
---
Signif. codes:  0 ‘***' 0.001 ‘**' 0.01 ‘*' 0.05 ‘.' 0.1 ‘ ' 1

Residual standard error: 3.253 on 8 degrees of freedom
Multiple R-squared:  0.9548,    Adjusted R-squared:  0.9491
F-statistic: 168.9 on 1 and 8 DF,  p-value: 1.164e-06

predict()函数

语法

线性回归中的predict()的基本语法是

predict(object, newdata)

以下是所使用的参数的描述

  • object是已使用lm()函数创建的公式。
  • newdata是包含预测变量的新值的向量。

预测新人的体重

# The predictor vector.
x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)

# The resposne vector.
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

# Apply the lm() function.
relation <- lm(y~x)

# Find weight of a person with height 170.
a <- data.frame(x = 170)
result <-  predict(relation,a)
print(result)

当我们执行上面的代码,它产生以下结果

       1
76.22869

以图形方式可视化回归

# Create the predictor and response variable.
x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)
relation <- lm(y~x)

# Give the chart file a name.
png(file = "linearregression.png")

# Plot the chart.
plot(y,x,col = "blue",main = "Height & Weight Regression",
abline(lm(x~y)),cex = 1.3,pch = 16,xlab = "Weight in Kg",ylab = "Height in cm")

# Save the file.
dev.off()

当我们执行上面的代码,它产生以下结果

以上就是R语言线性回归知识点总结的详细内容,更多关于R语言线性回归的资料请关注我们其它相关文章!

(0)

相关推荐

  • R语言如何进行线性回归的拟合度详解

    R语言进行线性回归的拟合度. 本文只是使用 R做回归计算,查看拟合度等,不讨论 R 函数的内部公式 在R中线性回归分析的函数是lm(),基本语法是 一元回归: lm(y ~ x,data) 多元回归:lm(y ~ x1+x2+x3-,data) 创建关系模型并获取系数 x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131) y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48) # 使用lm()函数

  • R语言实现线性回归的示例

    在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析. 简单对来说就是用来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法. 回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析.如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析. 一元线性回归分析法的数学方程: y = ax + b

  • R语言如何实现多元线性回归

    R小白几天的摸索 红色为输入,蓝色为输出 输入数据 先把数据用excel保存为csv格式放在"我的文档"文件夹 打开R软件,不用新建,直接写 回归计算 求三个平方和 置信区间(95%) 散点图(最显著的因变量) 拟合图 一元线性回归 结果:(看图) 变量系数  Estimate 变量系数标准误  Std. Error T检验值  t value T检验p值  Pr(>|t|) 均方根误差  Residual standard error 判定系数  R-squared 调整判定系

  • R语言线性回归知识点总结

    回归分析是一种非常广泛使用的统计工具,用于建立两个变量之间的关系模型. 这些变量之一称为预测变量,其值通过实验收集. 另一个变量称为响应变量,其值从预测变量派生. 在线性回归中,这两个变量通过方程相关,其中这两个变量的指数(幂)为1.数学上,线性关系表示当绘制为曲线图时的直线. 任何变量的指数不等于1的非线性关系将创建一条曲线. 线性回归的一般数学方程为 y = ax + b 以下是所使用的参数的描述 y是响应变量. x是预测变量. a和b被称为系数常数. 建立回归的步骤 回归的简单例子是当人的

  • R语言控制结构知识点总结

    if(condition) true_expression else false_expression if(condition) expression 因为表达式expression, true_expression, false_expression并非总是被执行,因此if函数的类型是special > typeof(`if`) [1] "special" 在R中.条件语句不是向量型运算 如果条件语句是由一个以上的逻辑值组成的向量,那么执行语句时只会用到向量中的第一个元素 x

  • R语言表达式知识点总结

    R提供的组合表达式的结构: 分号 括号 花括号 分离型表达式 x = 1 y = 2 z = 3 x = 1; y = 2; z = 3 括号 括号会返回括号内表达式的执行结果 花括号 花括号用于执行一些列表达式(由换行符或者分号隔开),并返回最后一个表达式的执行结果 {expression_1; expression_2; ... ; expression_ } (笔记:函数花括号内的符号相当于局部变量) 花括号的底层操作是调用{} 到此这篇关于R语言表达式知识点总结的文章就介绍到这了,更多相

  • R语言运算符知识点讲解

    运算符 运算符:包含一个或者两个参数的无括号的参数 符号 说明 + - * ^ %% 取模运算 %/% 整除运算 可以定义自己的二元运算符 `%myop%` = function(a, b){ 2*a + 2*b } > 1 %myop% 1 [1] 4 一些特殊的语言结构也是二元运算符 例如:赋值运算符<-,索引[],函数调用max(a, b) 运算顺序 运算符的优先级 (按优先级排序) 运算符 描述 ({ 函数调用和分组表达式 [ [[ 索引 :: ::: 访问命名空间中的变量 $ @ 成

  • R语言常量知识点总结

    R语言基本的数据类型有数值型, 逻辑型(TRUE, FALSE),文本(字符串). 支持缺失值,有专门的复数类型. 常量是指直接写在程序中的值. 数值型常量包括整型.单精度.双精度等,一般不需要区分.写法如123, 123.45, -123.45, -0.012, 1.23E2, -1.2E-2等. 为了表示123是整型,可以写成123L. 字符型常量用两个双撇号或两个单撇号包围,如"Li Ming"或'Li Ming'. 字符型支持中文,如"李明"或'李明'. 国

  • R语言时间序列知识点总结

    时间序列对象:变量随着时间变化 时间序列的回归函数(例如ar或arima)通常以时间序列作为参数 许多绘图函数都有针对时间序列对象的特殊方法 ts函数创建时间序列对象 ts(data = NA, start = 1, end = numeric(0), frequency = 1, deltat = 1, ts.eps = getOption("ts.eps"), class = , names = ) data参数指定时间序列的观测值,其他参数指定观测值的起始区间 ts函数参数的含义

  • R语言向量知识点及实例讲解

    有常见的六种基本的向量类型 创建向量 设定recursive = T,c函数可以从其他数据结构中递归形成向量 > v <- c(.295, .300, .250, .287, list(.102, .200, .303), recursive = T) > v [1] 0.295 0.300 0.250 0.287 0.102 0.200 0.303 > typeof(v) [1] "double" > v <- c(.295, .300, .250

  • R语言符号知识点汇总

    符号 当在R中定义一个变量时,实际上就是在环境中将一个符号赋给一个值 x <- 1 实际上就是在全局环境中将符号x赋给一个长度为1,值为1的向量对象 当R解释器对表达式求值时,它会处理所有的符号 如果将若干个符号组合成一个对象,R会解析成该对象的每个符号 > x <- 1 > y <- 2 > z <- 3 > > (v <- c(x, y, z)) [1] 1 2 3 > > #由于v已定义,更改x的值并不会使v的值也相应变化 &g

  • R语言属性知识点总结及实例

    属性(attribute):R中对象具备的特性 特性描述了所代表的内容以及R解释该对象的方式 很多时候两个对象之间的唯一差别在于它们的属性不同 常见的属性 属性 描述 class 对象的类 comment 对象的注释,一般用于描述对象的含义 dim 对象的维度 dimnames 与对象的每个维度相关的名字 names 返回对象的名字属性.返回结果取决于对象的类型.对于数据框对象会返回数据框的列名;对于数组会返回数组中被命名元素的名字 row,names 对象的行名(dimnames相关) tsp

  • R语言数据类型知识点总结

    通常,在使用任何编程语言进行编程时,您需要使用各种变量来存储各种信息. 变量只是保留值的存储位置. 这意味着,当你创建一个变量,你必须在内存中保留一些空间来存储它们. 您可能想存储各种数据类型的信息,如字符,宽字符,整数,浮点,双浮点,布尔等.基于变量的数据类型,操作系统分配内存并决定什么可以存储在保留内存中. 与其他编程语言(如 C 中的 C 和 java)相反,变量不会声明为某种数据类型. 变量分配有 R 对象,R 对象的数据类型变为变量的数据类型.尽管有很多类型的 R 对象,但经常使用的是

随机推荐