详解Python中第三方库Faker

项目开发初期,为了测试方便,我们总要造不少假数据到系统中,尽量模拟真实环境。

比如要创建一批用户名,创建一段文本,电话号码,街道地址、IP地址等等。

平时我们基本是键盘一顿乱敲,随便造个什么字符串出来,当然谁也不认识谁。

现在你不要这样做了,用Faker就能满足你的一切需求。

1. 安装

pip install Faker

2. 简单使用

>>> from faker import Faker
>>> fake = Faker(locale='zh_CN')
>>> fake.name()
'李洁'
>>> fake.address()
'上海市兴安盟县江北东莞路r座 803484'

参数 locale:为生成数据的文化选项(语种),默认为 en_US,只有使用了相关文化,才能生成相对应的随机信息

常见的文化选项:

  • zh_CN - Chinese (China Mainland)
  • zh_TW - Chinese (China Taiwan)
  • en_US - English (United States)

3. 其他方法

3.1 地理信息类

city_suffix():市,县
country():国家
country_code():国家编码
district():区
geo_coordinate():地理坐标
latitude():地理坐标(纬度)
longitude():地理坐标(经度)
postcode():邮编
province():省份
address():详细地址
street_address():街道地址
street_name():街道名
street_suffix():街、路

3.2 基础信息类

ssn():生成身份证号
bs():随机公司服务名
company():随机公司名(长)
company_prefix():随机公司名(短)
company_suffix():公司性质,如'信息有限公司'
credit_card_expire():随机信用卡到期日,如'03/30'
credit_card_full():生成完整信用卡信息
credit_card_number():信用卡号
credit_card_provider():信用卡类型
credit_card_security_code():信用卡安全码
job():随机职位
first_name_female():女性名
first_name_male():男性名
name():随机生成全名
name_female():男性全名
name_male():女性全名
phone_number():随机生成手机号
phonenumber_prefix():随机生成手机号段,如139

3.3 邮箱信息类

ascii_company_email():随机ASCII公司邮箱名
ascii_email():随机ASCII邮箱:
company_email():公司邮箱
email():普通邮箱
safe_email():安全邮箱

3.4 网络基础信息类

domain_name():生成域名
domain_word():域词(即,不包含后缀)
ipv4():随机IP4地址
ipv6():随机IP6地址
mac_address():随机MAC地址
tld():网址域名后缀(.com,.net.cn,等等,不包括.)
uri():随机URI地址
uri_extension():网址文件后缀
uri_page():网址文件(不包含后缀)
uri_path():网址文件路径(不包含文件名)
url():随机URL地址
user_name():随机用户名
image_url():随机URL地址

3.5 浏览器信息类

chrome():随机生成Chrome的浏览器user_agent信息
firefox():随机生成FireFox的浏览器user_agent信息
internet_explorer():随机生成IE的浏览器user_agent信息
opera():随机生成Opera的浏览器user_agent信息
safari():随机生成Safari的浏览器user_agent信息
linux_platform_token():随机Linux信息
user_agent():随机user_agent信息

3.6 数字信息

numerify():三位随机数字
random_digit():0~9随机数
random_digit_not_null():1~9的随机数
random_int():随机数字,默认0~9999,可以通过设置min,max来设置
random_number():随机数字,参数digits设置生成的数字位数
pyfloat():随机Float数字
pyint():随机Int数字(参考random_int()参数)
pydecimal():随机Decimal数字(参考pyfloat参数)

3.7 文本加密类

pystr():随机字符串
random_element():随机字母
random_letter():随机字母
paragraph():随机生成一个段落
paragraphs():随机生成多个段落
sentence():随机生成一句话
sentences():随机生成多句话,与段落类似
text():随机生成一篇文章
word():随机生成词语
words():随机生成多个词语,用法与段落,句子,类似
binary():随机生成二进制编码
boolean():True/False
language_code():随机生成两位语言编码
locale():随机生成语言/国际 信息
md5():随机生成MD5
null_boolean():NULL/True/False
password():随机生成密码,可选参数:length:密码长度;special_chars:是否能使用特殊字符;digits:是否包含数字;upper_case:是否包含大写字母;lower_case:是否包含小写字母
sha1():随机SHA1
sha256():随机SHA256
uuid4():随机UUID

3.8 时间信息类

date():随机日期
date_between():随机生成指定范围内日期,参数:start_date,end_date
date_between_dates():随机生成指定范围内日期,用法同上
date_object():随机生产从1970-1-1到指定日期的随机日期。
date_time():随机生成指定时间(1970年1月1日至今)
date_time_ad():生成公元1年到现在的随机时间
date_time_between():用法同dates
future_date():未来日期
future_datetime():未来时间
month():随机月份
month_name():随机月份(英文)
past_date():随机生成已经过去的日期
past_datetime():随机生成已经过去的时间
time():随机24小时时间
timedelta():随机获取时间差
time_object():随机24小时时间,time对象
time_series():随机TimeSeries对象
timezone():随机时区
unix_time():随机Unix时间
year():随机年份

4. 实战使用

import pymysql
from faker import Faker

conn = pymysql.connect(host="114.215.129.166", port=3306, user="nice", password="", db="flask201",
            charset="utf8")

cursor = conn.cursor()
sql1 = """drop table if exists faker_user"""
sql2 = """
create table faker_user(
pid int primary key auto_increment,
username varchar(20),
password varchar(20),
address varchar(35)
)
"""
cursor.execute(sql1)
cursor.execute(sql2)
fake = Faker("zh-CN")
for i in range(20):
  sql = """insert into faker_user(username,password,address)
  values('%s','%s','%s')""" % (fake.name(), fake.password(special_chars=False), fake.address())
  cursor.execute(sql)

conn.commit()
cursor.close()
conn.close()

到此这篇关于详解Python中第三方库Faker的文章就介绍到这了,更多相关Python第三方库Faker内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python使用到第三方库PyMuPDF图片与pdf相互转换

    使用 Python 进行图片和pdf之间的相互转换 使用到第三方库 PyMuPDF 在 python 环境下对 PDF 文件的操作. PDF 转为图片 需新建文件夹 pdf2png import fitz import glob def rightinput(desc): flag=True while(flag): instr = input(desc) try: intnum = eval(instr) if type(intnum)==int: flag = False except: p

  • 无法使用pip命令安装python第三方库的原因及解决方法

    再dos中无法使用pip,命令主要是没有发现这个命令.我们先找到这个命令的位置,一般是在python里面的Scripts文件夹里面.我们可以把dos切换到对应的文件夹,再使用pip命令就可以了. 如果你在使用pip命令安装Python第三方库时也出现下面这样. 这是我在安装requests库时 我们发现pip命令无法使用,这时我们看一下python文件夹下的Scripts文件,如下 我发现我里面有pip和easy_install,也就是我可以使用pip命令所以我们要在这个文件夹下使用pip命令

  • Python第三方库h5py_读取mat文件并显示值的方法

    mat数据格式是Matlab默认保存的数据格式.在Python中,我们可以使用h5py库来读取mat文件. >>> import h5py >>> data = h5py.File("**.mat") >>> test = data["digitStruct/name"] #<HDF5 dataset "name": shape (13068, 1), type "|O&quo

  • python随机生成库faker库api实例详解

    废话不多说,直接上代码! # -*- coding: utf-8 -*- # @Author : FELIX # @Date : 2018/6/30 9:49 from faker import Factory # zh_CN 表示中国大陆版 fake = Factory().create('zh_CN') # 产生随机手机号 print(fake.phone_number()) # 产生随机姓名 print(fake.name()) # 产生随机地址 print(fake.address())

  • Python模块汇总(常用第三方库)

    模块 定义 计算机在开发过程中,代码越写越多,也就越难以维护,所以为了编写可维护的代码,我们会把函数进行分组,放在不同的文件里.在python里,一个.py文件就是一个模块 优点: 提高代码的可维护性. 提高代码的复用,当模块完成时就可以在其他代码中调用 引用其他模块,包含python内置模块和其他第三方模块 避免函数名和变量名等名称冲突 Python语言生态 Python语言提供超过15万个第三方库,Python库之间广泛联系.逐层封装. 使用pip安装 Python社区:https://py

  • 关于Python-faker的函数效果一览

    tags faker 随机 虚拟 faker文档链接 代码程序: # -*- coding=utf-8 -*- import sys from faker import Factory reload(sys) sys.setdefaultencoding('utf8') fake = Factory().create('zh_CN') li = dir(fake) def get_dir_run(): with open('somefile.txt', 'wt') as f: for i in

  • 详解Python中第三方库Faker

    项目开发初期,为了测试方便,我们总要造不少假数据到系统中,尽量模拟真实环境. 比如要创建一批用户名,创建一段文本,电话号码,街道地址.IP地址等等. 平时我们基本是键盘一顿乱敲,随便造个什么字符串出来,当然谁也不认识谁. 现在你不要这样做了,用Faker就能满足你的一切需求. 1. 安装 pip install Faker 2. 简单使用 >>> from faker import Faker >>> fake = Faker(locale='zh_CN') >&

  • Python中第三方库Faker的使用详解

    目录 背景介绍 实战:模拟1w条数据写入Excel Python库讲解 1. 生成姓名 2. 生成详细地址 3. 生成所在省份 4. 生成手机号 5. 生成身份证号 6. 生成出生年月 7. 生成邮箱 补充 1. address 地址 2. person 人物 3. color 颜色 4. company 公司 5. credit_card 银行信用卡 6. date_time 时间日期 7. file 文件 8. internet 互联网 9. job 工作 10. lorem 乱数假文 11

  • 详解Python中pyautogui库的最全使用方法

    在使用Python做脚本的话,有两个库可以使用,一个为PyUserInput库,另一个为pyautogui库.就本人而言,我更喜欢使用pyautogui库,该库功能多,使用便利.下面给大家介绍一下pyautogui库的使用方法.在cmd命令框中输入pip3 install pyautogui即可安装该库! 常用操作 我们在pyautogui库中常常使用的方法,如下: import pyautogui pyautogui.PAUSE = 1 # 调用在执行动作后暂停的秒数,只能在执行一些pyaut

  • 详解python中mongoengine库用法

    目录 一.MongoDB的安装与连接 二.MongoEngine模型介绍 2.1.ODM模型介绍 2.2.常见数据类型 2.3.数据类型通用参数 2.4.类属性meta常见配置项 2.5.文档的嵌套模型 三.添加数据 3.1.方式一 3.2.方式二:使用create()方法 四.查询数据 4.1.单个文档查询 4.2.条件查询 4.3.聚合统计 4.4.排序 4.5.分页处理 五.修改和删除数据 5.1.修改数据 5.2.删除数据 一.MongoDB的安装与连接 安装:pip install m

  • 详解python中docx库的安装过程

    python中docx库的简介 python-docx包,这是一个很强大的包,可以用来创建docx文档,包含段落.分页符.表格.图片.标题.样式等几乎所有的word文档中能常用的功能都包含了,这个包的主要功能便是用来创建文档,相对来说用来修改功能不是很强大.一般情况下在Anaconda中不自带,需另行下载. 导入docx的方法 我的实现方法是通过pip工具在线下载:首先打开cmd命令窗口,然后输入pip install python-docx,然后回车静等.最后命令行中出现Successfull

  • python中第三方库pyecharts的使用详解

    与pyecharts有关的两个网站:官方网站:pyecharts - A Python Echarts Plotting Library built with love.,画廊功能的网站: Document Description https://gallery.pyecharts.org/#/ 在画廊网站中可以查看各个图的实例 pyecharts的作用:用来做数据图表 做一个图的步骤: 1.导包 2.创建一个图对象 3.添加数据 4.设置全局配置项 5.通过render方法将代码生成图像 1.

  • 详解python中asyncio模块

    一直对asyncio这个库比较感兴趣,毕竟这是官网也非常推荐的一个实现高并发的一个模块,python也是在python 3.4中引入了协程的概念.也通过这次整理更加深刻理解这个模块的使用 asyncio 是干什么的? 异步网络操作并发协程 python3.0时代,标准库里的异步网络模块:select(非常底层) python3.0时代,第三方异步网络库:Tornado python3.4时代,asyncio:支持TCP,子进程 现在的asyncio,有了很多的模块已经在支持:aiohttp,ai

  • 详解python的xlwings库读写excel操作总结

    一.总结(点击显示或隐藏总结内容) 一句话总结: xlwings 是 Python 中操作Excel的一个第三方库,支持.xls读写,.xlsx读写,操作非常简单,功能也很强大 1.xlwings 中的逻辑:应用->工作簿->工作表->范围 对应的代码? 应用:一个应用(一个xlwings程序):app = xw.App(visible=True, add_book=False) 工作簿(book):excel文件(excel程序):wb = app.books.add() 工作表(sh

  • 一文详解Python中生成器的原理与使用

    目录 什么是生成器 迭代器和生成器的区别 创建方式 生成器表达式 基本语法 生成器函数 yield关键字 yield和return yield的使用方法 生成器函数的基本使用 send的使用 可迭代对象的优化 总结 我们学习完推导式之后发现,推导式就是在容器中使用一个for循环而已,为什么没有元组推导式? 原因就是“元组推导式”的名字不是这样的,而是叫做生成器表达式. 什么是生成器 生成器表达式本质上就是一个迭代器,是定义迭代器的一种方式,是允许自定义逻辑的迭代器.生成器使用generator表

  • 一文详解Python中的重试机制

    目录 介绍 1. 最基本的重试 2. 设置停止基本条件 3. 设置何时进行重试 4. 重试后错误重新抛出 5. 设置回调函数 介绍 为了避免由于一些网络或等其他不可控因素,而引起的功能性问题.比如在发送请求时,会因为网络不稳定,往往会有请求超时的问题. 这种情况下,我们通常会在代码中加入重试的代码.重试的代码本身不难实现,但如何写得优雅.易用,是我们要考虑的问题. 这里要给大家介绍的是一个第三方库 - Tenacity (标题中的重试机制并并不准确,它不是 Python 的内置模块,因此并不能称

随机推荐