pandas处理csv文件的方法步骤

一、我的需求

对于这样的一个 csv 表,需要将其
(1)将营业部名称和日期和股票代码进行拼接
(2)对于除了买入金额不同的的数据需要将它们的买入金额相加,每个买入金额乘以买卖序号的符号表示该营业名称对应的买入金额

比如:xx公司,20190731,1,股票1,4000,C20201010,xxxx
我这里想要的结果是:xx公司2019713C20201010,4000

二、代码

(1)首先由于文件是 gbk,所以读取是需要注意 encoding
(2)日期是int类型,所以需要转化为 字符串

import pandas as pd
import numpy as np

#读取数据
filename = "test.csv"
# 读取 excel 表,根据文件的编码指定编码方式
data = pd.read_csv(filename, encoding='gbk')
# 将所有内容转为字符串
# data = data.applymap(str)
# 将日期这一列转为字符串
data['日期'] = data['日期'].apply(str)

# print(data.loc[0,'营业部名称'])
# print(data.loc[0,'日期'])
# print(data.loc[0,'股票代码'])
# print(data.loc[0,'买卖序号'])
# print(data.loc[0,'买入金额'])

# 拼接:营业部名称+日期+股票代码
data['name_date_code'] = data['营业部名称'] + data['日期'] + data['股票代码']
# 取"买卖序号"的符号和买入金额相乘
# np.sign 获取序号对应的符号
data['buy'] = np.sign(data['买卖序号']) * data['买入金额']
data = data.drop(['营业部名称', '日期', '买卖序号', '股票名', '买入金额', '股票代码', 'data_stock'], axis=1)

# 将 name_date_code 相同的行,金额相加
buy_sum = data.groupby('name_date_code')['buy'].sum()
# 将相加的金额加入数据data,缺失数据用0填充
data['buy_sum'] = data.loc[:, 'name_date_code'].map(buy_sum).fillna(0)
# 将买入金额删掉,只剩下两列数据
data = data.drop(['buy'], axis=1)
# 删除重复行
data = data.drop_duplicates()
# 写入数据,同样需要注意指定编码格式
data.to_csv("YYBD_result.csv", encoding='gbk',index=False)

三、总结

(1)编码格式,正常是 utf-8 的不用指定,用默认的即可

(2)pandas 读取一行数据

# data.iloc 取一整行
print(data.iloc[0])

(3)pandas 处理数据确实很厉害,字符串拼接,类型转换,删除重复行,真方便

到此这篇关于pandas处理csv文件的方法步骤的文章就介绍到这了,更多相关pandas处理csv文件内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python使用pandas处理excel文件转为csv文件的方法示例

    由于客户提供的是excel文件,在使用时期望使用csv文件格式,且对某些字段内容需要做一些处理,如从某个字段中固定的几位抽取出来,独立作为一个字段等,下面记录下使用acaconda处理的过程: import pandas df = pandas.read_excel("/***/***.xlsx") df.columns = [内部为你给你的excel每一列自定义的名称](比如我给我的excel自定义列表为: ["url","productName&quo

  • 利用numpy和pandas处理csv文件中的时间方法

    环境:numpy,pandas,python3 在机器学习和深度学习的过程中,对于处理预测,回归问题,有时候变量是时间,需要进行合适的转换处理后才能进行学习分析,关于时间的变量如下所示,利用pandas和numpy对csv文件中时间进行处理. date (UTC) Price 01/01/2015 0:00 48.1 01/01/2015 1:00 47.33 01/01/2015 2:00 42.27 #coding:utf-8 import datetime import pandas as

  • Python使用Pandas对csv文件进行数据处理的方法

    今天接到一个新的任务,要对一个140多M的csv文件进行数据处理,总共有170多万行,尝试了导入本地的MySQL数据库进行查询,结果用Navicat导入直接卡死....估计是XAMPP套装里面全默认配置的MySQL性能不给力,又尝试用R搞一下吧结果发现光加载csv文件就要3分钟左右的时间,相当不给力啊,翻了翻万能的知乎发现了Python下的一个神器包:Pandas(熊猫们?),加载这个140多M的csv文件两秒钟就搞定,后面的分类汇总等操作也都是秒开,太牛逼了!记录一下这次数据处理的过程: 使用

  • pandas中read_csv的缺失值处理方式

    今天遇到的问题是,要将一份csv数据读入dataframe,但某些列中含有NA值.对于这些列来说,NA应该作为一个有意义的level,而不是缺失值,但read_csv函数会自动将类似的缺失值理解为缺失值并变为NaN. 看pandas文档中read_csv函数中这两个参数的描述,默认会将'-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A N/A','#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', '-NaN', '

  • Python使用pandas处理CSV文件的实例讲解

    Python中有许多方便的库可以用来进行数据处理,尤其是Numpy和Pandas,再搭配matplot画图专用模块,功能十分强大. CSV(Comma-Separated Values)格式的文件是指以纯文本形式存储的表格数据,这意味着不能简单的使用Excel表格工具进行处理,而且Excel表格处理的数据量十分有限,而使用Pandas来处理数据量巨大的CSV文件就容易的多了. 我用到的是自己用其他硬件工具抓取得数据,硬件环境是在Linux平台上搭建的,当时数据是在运行脚本后直接输出在termin

  • pandas处理csv文件的方法步骤

    一.我的需求 对于这样的一个 csv 表,需要将其 (1)将营业部名称和日期和股票代码进行拼接 (2)对于除了买入金额不同的的数据需要将它们的买入金额相加,每个买入金额乘以买卖序号的符号表示该营业名称对应的买入金额 比如:xx公司,20190731,1,股票1,4000,C20201010,xxxx 我这里想要的结果是:xx公司2019713C20201010,4000 二.代码 (1)首先由于文件是 gbk,所以读取是需要注意 encoding (2)日期是int类型,所以需要转化为 字符串

  • python:pandas合并csv文件的方法(图书数据集成)

    数据集成:将不同表的数据通过主键进行连接起来,方便对数据进行整体的分析. 两张表:ReaderInformation.csv,ReaderRentRecode.csv ReaderInformation.csv: ReaderRentRecode.csv: pandas读取csv文件,并进行csv文件合并处理: # -*- coding:utf-8 -*- import csv as csv import numpy as np # ------------- # csv读取表格数据 # ---

  • python 使用pandas读取csv文件的方法

    目录 pandas读取csv文件的操作 1. 读取csv文件 在这里记录一下,python使用pandas读取文件的方法用到pandas库的read_csv函数 # -*- coding: utf-8 -*- """ Created on Mon Jan 24 16:48:32 2022 @author: zxy """ # 导入包 import numpy as np import pandas as pd import matplotlib.

  • Pandas读写CSV文件的方法示例

    读csv 使用pandas读取 import pandas as pd import csv if name == '__main__': # header=0--表示csv文件的第一行默认为dataframe数据的行名称, # index_col=0--表示使用第0列作为dataframe的行索引, # squeeze=True--表示如果文件只包含一列,则返回一个序列. file_dataframe = pd.read_csv('../datasets/data_new_2/csv_file

  • 使用pandas读取csv文件的指定列方法

    根据教程实现了读取csv文件前面的几行数据,一下就想到了是不是可以实现前面几列的数据.经过多番尝试总算试出来了一种方法. 之所以想实现读取前面的几列是因为我手头的一个csv文件恰好有后面几列没有可用数据,但是却一直存在着.原来的数据如下: GreydeMac-mini:chapter06 greyzhang$ cat data.csv 1,name_01,coment_01,,,, 2,name_02,coment_02,,,, 3,name_03,coment_03,,,, 4,name_04

  • ​python中pandas读取csv文件​时如何省去csv.reader()操作指定列步骤

    优点: 方便,有专门支持读取csv文件的pd.read_csv()函数. 将csv转换成二维列表形式 支持通过列名查找特定列. 相比csv库,事半功倍 1.读取csv文件 import pandas as pd   file="c:\data\test.csv" csvPD=pd.read_csv(file)   df = pd.read_csv('data.csv', encoding='gbk') #指定编码     read_csv()方法参数介绍 filepath_or_buf

  • python 利用pandas将arff文件转csv文件的方法

    直接贴代码啦: #coding=utf-8 import pandas as pd def arff_to_csv(fpath): #读取arff数据 if fpath.find('.arff') <0: print('the file is nott .arff file') return f = open(fpath) lines = f.readlines() content = [] for l in lines: content.append(l) datas = [] for c i

  • 使用pandas read_table读取csv文件的方法

    read_csv是pandas中专门用于csv文件读取的功能,不过这并不是唯一的处理方式.pandas中还有读取表格的通用函数read_table. 接下来使用read_table功能作一下csv文件的读取尝试,使用此功能的时候需要指定文件中的内容分隔符. 查看csv文件的内容如下: In [10]: cat data.csv index,name,comment,,,, 1,name_01,coment_01,,,, 2,name_02,coment_02,,,, 3,name_03,come

随机推荐