Python深度学习pytorch神经网络多层感知机简洁实现
我们可以通过高级API更简洁地实现多层感知机。
import torch from torch import nn from d2l import torch as d2l
模型
与softmax回归的简洁实现相比,唯一的区别是我们添加了2个全连接层。第一层是隐藏层,它包含256个隐藏单元,并使用了ReLU激活函数。第二层是输出层。
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 10)) def init_weights(m): if type(m) == nn.Linear: nn.init.normal_(m.weight, std=0.01) net.apply(init_weights)
训练过程的实现与我们实现softmax回归时完全相同,这种模块化设计使我们能够将与和模型架构有关的内容独立出来。
batch_size, lr, num_epochs = 256, 0.1, 10 # 批量大小为256,学习率为0.1,类型为10 loss = nn.CrossEntropyLoss() # 使用交叉熵损失函数 trainer = torch.optim.SGD(net.parameters(), lr=lr) # 开始训练
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
以上就是Python深度学习pytorch神经网络多层感知机简洁实现的详细内容,更多关于pytorch神经网络的资料请关注我们其它相关文章!
相关推荐
-
PyTorch上搭建简单神经网络实现回归和分类的示例
本文介绍了PyTorch上搭建简单神经网络实现回归和分类的示例,分享给大家,具体如下: 一.PyTorch入门 1. 安装方法 登录PyTorch官网,http://pytorch.org,可以看到以下界面: 按上图的选项选择后即可得到Linux下conda指令: conda install pytorch torchvision -c soumith 目前PyTorch仅支持MacOS和Linux,暂不支持Windows.安装 PyTorch 会安装两个模块,一个是torch,一个 torch
-
关于pytorch中全连接神经网络搭建两种模式详解
pytorch搭建神经网络是很简单明了的,这里介绍两种自己常用的搭建模式: import torch import torch.nn as nn first: class NN(nn.Module): def __init__(self): super(NN,self).__init__() self.model=nn.Sequential( nn.Linear(30,40), nn.ReLU(), nn.Linear(40,60), nn.Tanh(), nn.Linear(60,10), n
-
Pytorch实现神经网络的分类方式
本文用于利用Pytorch实现神经网络的分类!!! 1.训练神经网络分类模型 import torch from torch.autograd import Variable import matplotlib.pyplot as plt import torch.nn.functional as F import torch.utils.data as Data torch.manual_seed(1)#设置随机种子,使得每次生成的随机数是确定的 BATCH_SIZE = 5#设置batch
-
PyTorch上实现卷积神经网络CNN的方法
一.卷积神经网络 卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因此CNN在
-
Python深度学习pytorch神经网络多层感知机简洁实现
我们可以通过高级API更简洁地实现多层感知机. import torch from torch import nn from d2l import torch as d2l 模型 与softmax回归的简洁实现相比,唯一的区别是我们添加了2个全连接层.第一层是隐藏层,它包含256个隐藏单元,并使用了ReLU激活函数.第二层是输出层. net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 1
-
Python深度学习pytorch神经网络Dropout应用详解解
目录 扰动的鲁棒性 实践中的dropout 简洁实现 扰动的鲁棒性 在之前我们讨论权重衰减(L2正则化)时看到的那样,参数的范数也代表了一种有用的简单性度量.简单性的另一个有用角度是平滑性,即函数不应该对其输入的微笑变化敏感.例如,当我们对图像进行分类时,我们预计向像素添加一些随机噪声应该是基本无影响的. dropout在正向传播过程中,计算每一内部层同时注入噪声,这已经成为训练神经网络的标准技术.这种方法之所以被称为dropout,因为我们从表面上看是在训练过程中丢弃(drop out)一些
-
Python深度学习pytorch神经网络填充和步幅的理解
目录 填充 步幅 上图中,输入的高度和宽度都为3,卷积核的高度和宽度都为2,生成的输出表征的维度为 2 × 2 2\times2 2×2.从上图可看出卷积的输出形状取决于输入形状和卷积核的形状. 填充 以上面的图为例,在应用多层卷积时,我们常常丢失边缘像素. 解决这个问题的简单方法即为填充(padding):在输入图像的边界填充元素(通常填充元素是0). 例如,在上图中我们将 3 × 3 3\times3 3×3输入填充到 5 × 5 5\times5 5×5,那么它的输出就增加为 4 × 4
-
Python深度学习pytorch神经网络多输入多输出通道
目录 多输入通道 多输出通道 1 × 1 1\times1 1×1卷积层 虽然每个图像具有多个通道和多层卷积层.例如彩色图像具有标准的RGB通道来指示红.绿和蓝.但是到目前为止,我们仅展示了单个输入和单个输出通道的简化例子.这使得我们可以将输入.卷积核和输出看作二维张量. 当我们添加通道时,我们的输入和隐藏的表示都变成了三维张量.例如,每个RGB输入图像具有 3 × h × w 3\times{h}\times{w} 3×h×w的形状.我们将这个大小为3的轴称为通道(channel)维度.在本节
-
Python深度学习pytorch神经网络图像卷积运算详解
目录 互相关运算 卷积层 特征映射 由于卷积神经网络的设计是用于探索图像数据,本节我们将以图像为例. 互相关运算 严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是互相关运算(cross-correlation),而不是卷积运算.在卷积层中,输入张量和核张量通过互相关运算产生输出张量. 首先,我们暂时忽略通道(第三维)这一情况,看看如何处理二维图像数据和隐藏表示.下图中,输入是高度为3.宽度为3的二维张量(即形状为 3 × 3 3\times3 3×3).卷积核的高度和宽度都是2. 注意,
-
Python深度学习pytorch神经网络汇聚层理解
目录 最大汇聚层和平均汇聚层 填充和步幅 多个通道 我们的机器学习任务通常会跟全局图像的问题有关(例如,"图像是否包含一只猫呢?"),所以我们最后一层的神经元应该对整个输入的全局敏感.通过逐渐聚合信息,生成越来越粗糙的映射,最终实现学习全局表示的目标,同时将卷积图层的所有有时保留在中间层. 此外,当检测较底层的特征时(例如之前讨论的边缘),我们通常希望这些特征保持某种程度上的平移不变性.例如,如果我们拍摄黑白之间轮廓清晰的图像X,并将整个图像向右移动一个像素,即Z[i, j] = X[
-
Python深度学习pytorch神经网络块的网络之VGG
目录 VGG块 VGG网络 训练模型 与芯片设计中工程师从放置晶体管到逻辑元件再到逻辑块的过程类似,神经网络结构的设计也逐渐变得更加抽象.研究人员开始从单个神经元的角度思考问题,发展到整个层次,现在又转向模块,重复各层的模式. 使用块的想法首先出现在牛津大学的视觉几何组(visualgeometry Group)(VGG)的VGG网络中.通过使用循环和子程序,可以很容易地在任何现代深度学习框架的代码中实现这些重复的结构. VGG块 经典卷积神经网络的基本组成部分是下面的这个序列: 1.带填充以保
-
Python深度学习pytorch卷积神经网络LeNet
目录 LeNet 模型训练 在本节中,我们将介绍LeNet,它是最早发布的卷积神经网络之一.这个模型是由AT&T贝尔实验室的研究院Yann LeCun在1989年提出的(并以其命名),目的是识别手写数字.当时,LeNet取得了与支持向量机性能相媲美的成果,成为监督学习的主流方法.LeNet被广泛用于自动取款机中,帮助识别处理支票的数字. LeNet 总体来看,LeNet(LeNet-5)由两个部分组成: 卷积编码器: 由两个卷积层组成 全连接层密集快: 由三个全连接层组成 每个卷积块中的基本单元
-
Python深度学习pytorch实现图像分类数据集
目录 读取数据集 读取小批量 整合所有组件 目前广泛使用的图像分类数据集之一是MNIST数据集.如今,MNIST数据集更像是一个健全的检查,而不是一个基准. 为了提高难度,我们将在接下来的章节中讨论在2017年发布的性质相似但相对复杂的Fashion-MNIST数据集. import torch import torchvision from torch.utils import data from torchvision import transforms from d2l import to
-
Python深度学习pyTorch权重衰减与L2范数正则化解析
下面进行一个高维线性实验 假设我们的真实方程是: 假设feature数200,训练样本和测试样本各20个 模拟数据集 num_train,num_test = 10,10 num_features = 200 true_w = torch.ones((num_features,1),dtype=torch.float32) * 0.01 true_b = torch.tensor(0.5) samples = torch.normal(0,1,(num_train+num_test,num_fe
随机推荐
- Extjs4 类的定义和扩展实例
- FTP虚拟用户的使用方法
- php5.3中ZendGuardLoader与wincache冲突问题的解决方法
- Asp.net在页面间传递大量数据(数据表)建议采用的方法
- 获取远程flash并保存到本地
- PHP+MySQL之Insert Into数据插入用法分析
- Python微信企业号开发之回调模式接收微信端客户端发送消息及被动返回消息示例
- Python3.4实现从HTTP代理网站批量获取代理并筛选的方法示例
- SQL_Server全文索引的使用实例演示
- 关于Select Where In 的排序问题
- Android跑马灯MarqueeView源码解析
- serv_u要关闭被动模式(PASV),使用PORT模式才能连接FTP的解决办法
- Android EditText限制输入字数的方法
- js上传图片预览的实现方法
- php cookie用户登录的详解及实例代码
- Android 实现页面跳转
- linux下安装mysql及mysql.sock问题
- Java多线程模拟售票程序和线程安全问题
- Java移动文件夹及其所有子文件与子文件夹
- python爬取盘搜的有效链接实现代码