Redis缓存更新策略详解

本文实例为大家分享了Redis缓存更新策略的具体代码,供大家参考,具体内容如下

一、缓存的收益与成本

1.1 收益

  • 加速读写:因为缓存通常都是全内存的(例如Redis、Memcache),而存储层通常读写性能不够强悍(例如MySQL),内存读写的速度远远高于磁盘I/O。通过缓存的使用可以有效地加速读写,优化用户体验。
  • 降低后端负载:帮助后端减少访问量(Mysql设置有最大连接数,如果大量的访问同时达到数据库,而磁盘I/O的速度又很慢,很容易造成最大连接数被使用完,但Redis 理论最大)和复杂计算(例如很复杂的SQL语句),在很大程度降低了后端的负载。

1.2 成本

  • 数据不一致性:缓存层和存储层的数据存在着一定时间窗口的不一致性,时间窗口跟更新策略有关。
  • 代码维护成本:加入缓存后,需要同时处理缓存层和存储层的逻辑,增大了开发者维护代码的成本。
  • 运维成本:以Redis Cluster为例,加入后无形中增加了运维成本。

1.3 使用场景

  • 开销大的复杂计算:以MySQL为例子,一些复杂的操作或者计算(例如大量联表操作、一些分组计算),如果不加缓存,不但无法满足高并发量,同时也会给MySQL带来巨大的负担。
  • 加速请求响应:即使查询单条后端数据足够快,那么依然可以使用缓存,以Redis为例子,每秒可以完成数万次读写,并且提供的批量操作可以优化整个IO链的响应时间

二、缓存更新策略

2.1 内存溢出淘汰策略

思考:在生产环境的 redis 经常会丢掉一些数据,写进去了,过一会儿可能就没了。是什么原因?

Redis 缓存通常都是全内存,内存是很宝贵而且是有限的,磁盘是廉价而且是大量的。可能一台机器就几十个 G 的内存,但是可以有几个 T 的硬盘空间。Redis 主要是基于内存来进行高性能、高并发的读写操作。那既然内存是有限,比如 redis 就只能用 10G,你要是往里面写了 20G 的数据,会咋办?当然会干掉 10G 的数据,然后就保留 10G 的数据了。那干掉哪些数据?保留哪些数据?当然是干掉不常用的数据,保留常用的数据了。数据明明过期了,怎么还占用着内存?这是由 redis 的过期策略来决定。

在Redis中,当所用内存达到maxmemory上限(used_memory>maxmemory)时会触发相应的溢出控制策略。具体策略受maxmemory-policy参数控制。

Redis支持6种策略:

  • noeviction:默认策略,不会删除任何数据,拒绝所有写入操作并返回客户端错误信息(error)OOM command not allowed when used memory,此时Redis只响应读操作
  • volatile-lru:根据LRU算法删除设置了超时属性(expire)的键,直到腾出足够空间为止。如果没有可删除的键对象,回退到noeviction策略
  • volatile-random:随机删除过期键,直到腾出足够空间为止
  • allkeys-lru:根据LRU算法删除键,不管数据有没有设置超时属性,直到腾出足够空间为止
  • allkeys-random:随机删除所有键,直到腾出足够空间为止(不推荐)
  • volatile-ttl:根据键值对象的ttl(剩余时间(time to live,TTL) )属性,删除最近将要过期数据。如果没有,回退到noeviction策略

LRU :Least Recently Used ,最近最少使用的,缓存的元素有一个时间戳,当缓存容量满了,而又需要腾出地方来缓存新的元素的时候,那么现有缓存元素中时间戳离当前时间最远的元素将被清出缓存。

内存溢出控制策略可以采用config set maxmemory-policy{policy}动态配置。写命令导致当内存溢出时会频繁执行回收内存成本很高,在主从复制架构中,回收内存操作对应的删除命令会同步到从节点来,来保障主从节点数据一致性,从而导致写放大的问题。

2.2 过期策略

Redis 服务端采用的 过期策略是 : 惰性删除 + 定期删除

惰性删除:

Redis的每个库都有一个过期字典,过期字典中保存所有key的过期时间。当客户端读取一个key时会先到过期字典内查询key是否已经过期,如果key已经超过,会执行删除操作并返回空。这种策略是出于节省CPU成本考虑,但是单独用这种方式存在内存泄露的问题,当过期键一直没有访问将无法得到及时删除,从而导致内存不能及时释放。

定时删除:

Redis内部维护一个定时任务,默认每秒运行10次过期扫描(通过 redis.conf 中通过 hz 配置 修改运行次数),扫描并不是遍历过期字典中的所有键,而是采用了自适应算法,根据键的过期比例、使用快慢两种速率模式回收键:

1.从过期字典中随机取出 20 个键
2.删除这 20 个键中过期的键
3.如果过期键的比例超过 25% ,重复步骤 1 和 2

为了保证扫描不会出现循环过度,一直在执行定时删除定时任务无法对外提供服务,导致线程卡死现象,还增加了扫描时间的上限,默认是 25 毫秒(即默认在慢模式下,25毫秒还未执行完,切换为块模式,模式下超时时间为1毫秒且2秒内只能运行1次,当慢模式执行完毕正常退出,会重新切回快模式)

三、应用方更新

1.应用程序先从cache取数据,没有得到,则从数据库中取数据,成功后,放到缓存中。
2.先删除缓存,再更新数据库:这个操作有一个比较大的问题,更新数据的请求在对缓存删除完之后,又收到一个读请求,这个时候由于缓存被删除所以直接会读库,读操作的数据是老的并且会被加载进入缓存当中,后续读请求全部访问的老数据。
3.先更新数据库,再删除缓存(推荐)为什么不是写完数据库后更新缓存?主要是怕两个并发的写操作导致脏数据。

四、缓存粒度

1  通用性

缓存全部数据比部分数据更加通用,但从实际经验看,很长时间内应用只需要几个重要的属性。

2 占用空间

缓存全部数据要比部分数据占用更多的空间,存在以下问题:

  • 全部数据会造成内存的浪费。
  • 全部数据可能每次传输产生的网络流量会比较大,耗时相对较大,在极端情况下会阻塞网络。
  • 全部数据的序列化和反序列化的CPU开销更大。

3 代码维护

全部数据的优势更加明显,而部分数据一旦要加新字段需要修改业务代码,而且修改后通常还需要刷新缓存数据。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Redis实现多级缓存

    本文实例为大家分享了Redis实现多级缓存的具体代码,供大家参考,具体内容如下 一.多级缓存 1. 传统缓存方案 请求到达tomcat后,先去redis中获取缓存,不命中则去mysql中获取 2. 多级缓存方案 tomcat的请求并发数,是远小于redis的,因此tomcat会成为瓶颈 利用请求处理每个环节,分别添加缓存,减轻tomcat压力,提升服务性能 二.JVM本地缓存 缓存是存储在内存中,数据读取速度较快,能大量减少对数据库的访问,减少数据库压力 分布式缓存,如redis - 优点: 存

  • redis缓存数据库中数据的方法

    本文实例为大家分享了redis缓存数据库中数据的具体代码,供大家参考,具体内容如下 将数据库的数据保存到redis缓存 当第一次查询时,缓存没有对应的数据,则会查询数据库,并将数据更新到缓存当缓存中有对应的数据时,则会直接访问缓存,则不查询数据库这样在性能优化上有很大的帮助 ProvinceServiceImpl public class ProvinceServiceImpl implements ProvinceService {     private ProvinceDao dao =

  • 使用注解实现Redis缓存功能

    本文实例为大家分享了使用注解实现Redis缓存功能的具体代码,供大家参考,具体内容如下 非关系型内存数据库,有持久化操作, c语言编写的key,value存储系统(区别于MySQL的二维表格的形式存储.) rdb:周期性的持久化 aof:以日志形式追加 默认rdb开启,同时开启使用aof 数据类型:string.list.set.zset.hash. bitMaps 字节形式存储.geospatial 经纬度类型... 单线程:采用多路io复用实现高并发 使用: 添加依赖 <!-- redis

  • Redis缓存穿透/击穿工具类的封装

    目录 1. 简单的步骤说明 2. 逻辑缓存数据类型 3. 缓冲工具类的封装 3.1 CacheClient 类的类图结构 3.2 CacheClient 类代码 1. 简单的步骤说明 创建一个逻辑缓存数据类型 封装缓冲穿透和缓冲击穿工具类 2. 逻辑缓存数据类型 这里主要是创建一个可以往Redis里边存放的数据类型 RedisData 的Java类型 import lombok.Data; import java.time.LocalDateTime; @Data public class Re

  • Redis 缓存淘汰策略和事务实现乐观锁详情

    目录 缓存淘汰策略 标题LRU原理 标题Redis缓存淘汰策略 设置最大缓存 淘汰策略 Redis事务 Redis事务介绍 MULTI EXEC DISCARD WATCH Redis 不支持事务回滚(为什么呢) Redis乐观锁 Redis乐观锁实现秒杀 缓存淘汰策略 标题LRU原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”. 最常见的实现是使用一个链表保存缓存数据,

  • Redis缓存更新策略详解

    本文实例为大家分享了Redis缓存更新策略的具体代码,供大家参考,具体内容如下 一.缓存的收益与成本 1.1 收益 加速读写:因为缓存通常都是全内存的(例如Redis.Memcache),而存储层通常读写性能不够强悍(例如MySQL),内存读写的速度远远高于磁盘I/O.通过缓存的使用可以有效地加速读写,优化用户体验. 降低后端负载:帮助后端减少访问量(Mysql设置有最大连接数,如果大量的访问同时达到数据库,而磁盘I/O的速度又很慢,很容易造成最大连接数被使用完,但Redis 理论最大)和复杂计

  • 浅谈Redis缓存更新策略

      内存淘汰 超时剔除 主动更新 说明 不用自己维护,利用Redis的内存淘汰机制,当内存不足时自动淘汰部分数据.下次查询时更新缓存 给缓存数据添加TTL时间,到期后自动删除缓存,下次查询时更新缓存 编写业务逻辑,在修改数据的同时,更新缓存 一致性 差 一般 好 维护成本 无 低 高 业务场景需求: 在基本不会更新数据的情况下可以使用内存淘汰机制 在频繁更新数据的情况下可以使用主动更新,并以超时剔除作为兜底方案. 主动更新的三种方法 Cache Aside Pattern:由缓存的调用者,在更新

  • SpringBoot2整合Redis缓存三步骤代码详解

    遵循SpringBoot三板斧 第一步加依赖 <!-- Redis --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency> <!-- redis依赖commons-pool 这个依赖一定要添加 --> <

  • 【Redis缓存机制】详解Java连接Redis_Jedis_事务

    Jedis事务 我们使用JDBC连接Mysql的时候,每次执行sql语句之前,都需要开启事务:在MyBatis中,也需要使用openSession()来获取session事务对象,来进行sql执行.查询等操作.当我们对数据库的操作结束的时候,是事务对象负责关闭数据库连接. 事务对象用于管理.执行各种数据库操作的动作.它能够开启和关闭数据库连接,执行sql语句,回滚错误的操作. 我们的Redis也有事务管理对象,其位于redis.clients.jedis.Transaction下. Jedis事

  • Java进程内缓存框架EhCache详解

    目录 一:目录 二: 简介 2.1.基本介绍 2.2.主要的特性 2.3. 集成 2.4. ehcache 和 redis 比较 三:事例 3.1.在pom.xml中引入依赖 3.2.在src/main/resources/创建一个配置文件 ehcache.xml 3.3.测试类 3.4.缓存配置 一:xml配置方式: 二:编程方式配置 3.5.Ehcache API 四:Spring整合 4.1.pom.xml 引入spring和ehcache 4.2.在src/main/resources添

  • MyBatis 动态SQL和缓存机制实例详解

    有的时候需要根据要查询的参数动态的拼接SQL语句 常用标签: - if:字符判断 - choose[when...otherwise]:分支选择 - trim[where,set]:字符串截取,其中where标签封装查询条件,set标签封装修改条件 - foreach: if案例 1)在EmployeeMapper接口文件添加一个方法 public Student getStudent(Student student); 2)如果要写下列的SQL语句,只要是不为空,就作为查询条件,如下所示,这样

  • Android 中ViewPager重排序与更新实例详解

    Android 中ViewPager重排序与更新实例详解 最近的项目中有栏目订阅功能,在更改栏目顺序以后需要更新ViewPager.类似于网易新闻的频道管理. 在重新排序之后调用了PagerAdapter的notifyDataSetChanged方法,发现ViewPager并没有更新,于是我开始跟踪源码,在调用PagerAdapter的notifyDataSetChanged方法后,会触发Viewpager的dataSetChanged方法. void dataSetChanged() { //

  • springboot中使用redis的方法代码详解

    特别说明: 本文针对的是新版 spring boot 2.1.3,其 spring data 依赖为 spring-boot-starter-data-redis,且其默认连接池为 lettuce ​redis 作为一个高性能的内存数据库,如果不会用就太落伍了,之前在 node.js 中用过 redis,本篇记录如何将 redis 集成到 spring boot 中.提供 redis 操作类,和注解使用 redis 两种方式.主要内容如下: •docker 安装 redis •springboo

  • Spring 缓存抽象示例详解

    Spring缓存抽象概述 Spring框架自身并没有实现缓存解决方案,但是从3.1开始定义了org.springframework.cache.Cache和org.springframework.cache.CacheManager接口,提供对缓存功能的声明,能够与多种流行的缓存实现集成. Cache接口为缓存的组件规范定义,包含缓存的各种操作集合: Cache接口下Spring提供了各种xxxCache的实现:如RedisCache,EhCacheCache , ConcurrentMapCa

  • Redis的持久化方案详解

    Redis支持RDB与AOF两种持久化机制,持久化可以避免因进程异常退出或down机导致的数据丢失问题,在下次重启时能利用之前的持久化文件实现数据恢复. RDB持久化 RDB持久化即通过创建快照(压缩的二进制文件)的方式进行持久化,保存某个时间点的全量数据.RDB持久化是Redis默认的持久化方式.RDB持久化的触发包括手动触发与自动触发两种方式. 手动触发 save, 在命令行执行save命令,将以同步的方式创建rdb文件保存快照,会阻塞服务器的主进程,生产环境中不要用 bgsave, 在命令

随机推荐