Python 如何求矩阵的逆
我就废话不多说了,大家还是直接看代码吧~
import numpy as np kernel = np.array([1, 1, 1, 2]).reshape((2, 2)) print(kernel) print(np.linalg.inv(kernel))
注意,Singular matrix奇异矩阵不可求逆
补充:python+numpy中矩阵的逆和伪逆的区别
定义:
对于矩阵A,如果存在一个矩阵B,使得AB=BA=E,其中E为与A,B同维数的单位阵,就称A为可逆矩阵(或者称A可逆),并称B是A的逆矩阵,简称逆阵。(此时的逆称为凯利逆)
矩阵A可逆的充分必要条件是|A|≠0。
伪逆矩阵是逆矩阵的广义形式。由于奇异矩阵或非方阵的矩阵不存在逆矩阵,但可以用函数pinv(A)求其伪逆矩阵。
基本语法为X=pinv(A),X=pinv(A,tol),其中tol为误差,pinv为pseudo-inverse的缩写:max(size(A))*norm(A)*eps。
函数返回一个与A的转置矩阵A' 同型的矩阵X,并且满足:AXA=A,XAX=X.此时,称矩阵X为矩阵A的伪逆,也称为广义逆矩阵。
pinv(A)具有inv(A)的部分特性,但不与inv(A)完全等同。
如果A为非奇异方阵,pinv(A)=inv(A),但却会耗费大量的计算时间,相比较而言,inv(A)花费更少的时间。
代码如下:
1.矩阵求逆
import numpy as np a = np.array([[1, 2], [3, 4]]) # 初始化一个非奇异矩阵(数组) print(np.linalg.inv(a)) # 对应于MATLAB中 inv() 函数 # 矩阵对象可以通过 .I 求逆,但必须先使用matirx转化 A = np.matrix(a) print(A.I)
2.矩阵求伪逆
import numpy as np # 定义一个奇异阵 A A = np.zeros((4, 4)) A[0, -1] = 1 A[-1, 0] = -1 A = np.matrix(A) print(A) # print(A.I) 将报错,矩阵 A 为奇异矩阵,不可逆 print(np.linalg.pinv(A)) # 求矩阵 A 的伪逆(广义逆矩阵),对应于MATLAB中 pinv() 函数
这就是矩阵的逆和伪逆的区别
截至2020/10/4,matrix函数还可以使用,但已经过时,应该是mat函数这种。
以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。
相关推荐
-
Python 执行矩阵与线性代数运算
问题 你需要执行矩阵和线性代数运算,比如矩阵乘法.寻找行列式.求解线性方程组等等. 解决方案 NumPy 库有一个矩阵对象可以用来解决这个问题. 矩阵类似于3.9小节中数组对象,但是遵循线性代数的计算规则.下面的一个例子展示了矩阵的一些基本特性: >>> import numpy as np >>> m = np.matrix([[1,-2,3],[0,4,5],[7,8,-9]]) >>> m matrix([[ 1, -2, 3], [ 0, 4,
-
Python计算矩阵的和积的实例详解
python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包. 一.numpy的导入和使用 from numpy import *;#导入numpy的库函数 import numpy as np; #这个方式使用numpy的函数时,需要以np.开头. 二.矩阵的创建 由一维或二维数据创建矩阵 from numpy import *; a1=array([1,2,3]); a1=mat(a1); 创建常见的矩阵 data1=mat(zeros((3,3)));
-
Python numpy大矩阵运算内存不足如何解决
程序运行,产生如下结果,然后进程终止,导致这一结果的原因很有可能是内存爆炸. 当两个较大的 (e.g., 10000*10000 维)ndarray 做运算(加法,or 乘法)时,很容易出现这样的结果. 解决办法: 大多数情况下,这种大矩阵都是稀疏的.尽可能地利用稀疏计算的方式,例如稀疏矩阵,或者只计算非 0 位置的值. 如果都是整数运算,可以设置 dtype=int,而非 dtype=float, 可以省下不少空间. linux 系统下,使用 top 命令,可以很容易地看到内存(%MEM) 的
-
python用分数表示矩阵的方法实例
前言 在机器学习中,我们会经常和矩阵打交道.在矩阵的运算中,python默认的输出是浮点数,但是如果我们想要矩阵的元素以分数的形式显示,可以通过添加一行代码来实现. 1.函数及参数解释 set_printoptions()--控制输出方式 formatter--通用格式化输出 Fraction(x).limit_denominator(y)--返回一个分母不大于y且最接近x的分数 2.代码实现 from fractions import Fraction import numpy as np #
-
Python常用库Numpy进行矩阵运算详解
Numpy支持大量的维度数组和矩阵运算,对数组运算提供了大量的数学函数库! Numpy比Python列表更具优势,其中一个优势便是速度.在对大型数组执行操作时,Numpy的速度比Python列表的速度快了好几百.因为Numpy数组本身能节省内存,并且Numpy在执行算术.统计和线性代数运算时采用了优化算法. Numpy的另一个强大功能是具有可以表示向量和矩阵的多维数组数据结构.Numpy对矩阵运算进行了优化,使我们能够高效地执行线性代数运算,使其非常适合解决机器学习问题. 与Python列表相比
-
python实现mask矩阵示例(根据列表所给元素)
行和列的位置都在以下三个列表中的一列中,则对应位置为1,其余位置全为0 --[7-56,239-327,438-454,522-556,574-586] --[57-85,96-112,221-238] --[113-220,328-437,455-521,557-573] 代码实现 def generateMaskBasedOnDom(dom_path, length): """ :param dom_path: this is a file path, whi
-
Python 如何求矩阵的逆
我就废话不多说了,大家还是直接看代码吧~ import numpy as np kernel = np.array([1, 1, 1, 2]).reshape((2, 2)) print(kernel) print(np.linalg.inv(kernel)) 注意,Singular matrix奇异矩阵不可求逆 补充:python+numpy中矩阵的逆和伪逆的区别 定义: 对于矩阵A,如果存在一个矩阵B,使得AB=BA=E,其中E为与A,B同维数的单位阵,就称A为可逆矩阵(或者称A可逆),并称
-
Python numpy中矩阵的基本用法汇总
Python矩阵的基本用法 mat()函数将目标数据的类型转化成矩阵(matrix) 1,mat()函数和array()函数的区别 Numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素,虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中Numpy函数库中的matrix与MATLAB中matrices等价. 直接看一个例子: import numpy as np a = np.mat('1 3;5 7')
-
python简单实现矩阵的乘,加,转置和逆运算示例
本文实例讲述了python简单实现矩阵的乘,加,转置和逆运算.分享给大家供大家参考,具体如下: 使用python完成矩阵的乘,加,转置和逆: # -*- coding:utf-8 -*- #矩阵的乘,加,转置和逆 #numpy库提供矩阵运算的功能 from numpy import *; import numpy as np; #矩阵的创建(随机) data=mat(random.randint(10,size=(3,3))) data=mat([ [3,4,4], [4,9,7], [2,3,
-
在python中求分布函数相关的包实例
为了了解(正态)分布的方法和属性,我们首先引入norm >>>from scipy.stats import norm >>>rv = norm() >>>dir(rv) # reformatted ['__class__', '__delattr__', '__dict__', '__doc__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__redu
-
python实现求纯色彩图像的边框
本文实例为大家分享了python实现求纯色彩图像的边框,供大家参考,具体内容如下 先上效果图,这里显示有点色差, 实际数值是纯色的, 而不是混色的. 放大局部细节看是这样的 原图是下面这样的 这个算法最大的特点是保留原始像素的数值, 而不是把边框统一变成白色. 实现的算法也超级简单. 就是有点慢. 考虑到我这个应用场景对性能要求不高, 比人快就行. 人工是它的几百倍. 所以也就无所谓啦. 测试结果一张1080*1920的图用时3秒, 如果换成c语言估计0.5秒左右. 算法原理, 每次4个田子形像
-
python 共现矩阵的实现代码
目录 python共现矩阵实现 项目背景 什么是共现矩阵 共现矩阵的构建思路 共现矩阵的代码实现 共现矩阵(共词矩阵)计算 共现矩阵(共词矩阵) 补充一点 python共现矩阵实现 最近在学习python词库的可视化,其中有一个依据共现矩阵制作的可视化,感觉十分炫酷,便以此复刻. 项目背景 本人利用爬虫获取各大博客网站的文章,在进行jieba分词,得到每篇文章的关键词,对这些关键词进行共现矩阵的可视化. 什么是共现矩阵 比如我们有两句话: ls = ['我永远喜欢三上悠亚', '三上悠亚又出新作
-
Python实现求最大公约数及判断素数的方法
本文实例讲述了Python实现求最大公约数及判断素数的方法.分享给大家供大家参考.具体实现方法如下: #!/usr/bin/env python def showMaxFactor(num): count = num / 2 while count > 1: if num % count == 0: print 'largest factor of %d is %d' % (num, count) break #break跳出时会跳出下面的else语句 count -= 1 else: prin
-
Python实现求两个csv文件交集的方法
本文实例讲述了Python实现求两个csv文件交集的方法.分享给大家供大家参考,具体如下: #!/usr/bin/env python rd3 = open('data_17_17_2.csv') base = open('data_17_17_3.csv') wr3 = open('delNoBuyed3DayAndStoreAndInCar4.5.2.csv','w+') bsData = base.readlines() i = 1 for key in rd3: if key in bs
-
Python实现求笛卡尔乘积的方法
本文实例讲述了Python实现求笛卡尔乘积的方法.分享给大家供大家参考,具体如下: 在数学中,两个集合X和Y的笛卡尓乘积(Cartesian product),又称直积,表示为X × Y,第一个对象是X的成员而第二个对象是Y的所有可能有序对的其中一个成员.假设集合A={a,b},集合B={0,1,2},则两个集合的笛卡尔积为{(a,0), (a,1), (a,2), (b,0), (b,1), (b, 2)}.有时我们需要在python求两个list的笛卡尔乘积,其实很简单,一行代码搞定. 例如
-
Python实现的矩阵类实例
本文实例讲述了Python实现的矩阵类.分享给大家供大家参考,具体如下: 科学计算离不开矩阵的运算.当然,python已经有非常好的现成的库:numpy(numpy的简单安装与使用可参考http://www.jb51.net/article/66236.htm). 我写这个矩阵类,并不是打算重新造一个轮子,只是作为一个练习,记录在此. 注:这个类的函数还没全部实现,慢慢在完善吧. 全部代码: import copy class Matrix: '''矩阵类''' def __init__(sel
随机推荐
- HTML5实战与剖析之触摸事件(touchstart、touchmove和touchend)
- javascript实现当前页导航激活的方法
- JavaScript高级程序设计(第3版)学习笔记3 js简单数据类型
- ORACLE PL/SQL 触发器编程篇介绍
- 关于系统重装后Oracle数据库完全恢复的解决办法
- asp.net 源码保存 用程序分页
- Javascript获取CSS伪元素属性的实现代码
- python实现批量修改文件名代码
- jQuery使用attr()方法同时设置多个属性值用法实例
- node.js 抓取代理ip实例代码
- 在python3环境下的Django中使用MySQL数据库的实例
- JS简单实现点击跳转登陆邮箱功能的方法
- jquery 实时监听输入框值变化的完美方法(必看)
- 如何让动态插入的javascript脚本代码跑起来。
- jQuery实现原理的模拟代码 -6 代码下载
- js实现跨域的方法实例详解
- 金山反病毒20041220_日报
- LBS BLOG在IE7下图片出现滚动条的解决方法
- 讲解Python中fileno()方法的使用
- JDK安装配置教程