python3.6.3+opencv3.3.0实现动态人脸捕获

本文实例为大家分享了python实现动态人脸捕获的具体代码,供大家参考,具体内容如下

步骤

  1. 载入cv2
  2. 捕获摄像头
  3. 获取第一帧图像
  4. 定义人脸识别信息
  5. 开始循环
  6. 对第一帧图像进行识别
  7. 标示脸部特征和方框
  8. 显示帧
  9. 如果一切正常则读入下一帧
  10. 循环直至捕获失败
  11. 如果键入‘q'退出循环
  12. 循环结束清零

程序

import cv2
import numpy as np

cv2.namedWindow("Face_Detect") #定义一个窗口
cap=cv2.VideoCapture(0) #捕获摄像头图像
success,frame=cap.read() #读入第一帧

classifier=cv2.CascadeClassifier("C:/opencv-3.3.0/data/haarcascades/haarcascade_frontalface_alt.xml")
**#定义人脸识别的分类数据集,需要自己查找,在opencv的目录下,参考上面我的路径**

while success:#如果读入帧正常
 size=frame.shape[:2]
 image=np.zeros(size,dtype=np.float16)
 image=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
 cv2.equalizeHist(image,image)
 divisor=8
 h,w=size
 minSize=(int(w/divisor),int(h/divisor)) #像素一定是整数,或者用w//divisor

 faceRects=classifier.detectMultiScale(image,1.2,2,cv2.CASCADE_SCALE_IMAGE,minSize)
 #人脸识别

 if len(faceRects)> 0:
  for faceRect in faceRects:
   x,y,w,h=faceRect
   cv2.circle(frame,(x+w//2,y+h//2),min(w//2,h//2),(255,0,0),2) #圆形轮廓
   cv2.circle(frame,(x+w//4,y+2*h//5),min(w//8,h//8),(0,255,0),2) #左眼轮廓
   cv2.circle(frame,(x+3*w//4,y+2*h//5),min(w//8,h//8),(0,255,0),2)#右眼轮廓
   cv2.circle(frame,(x+w//2,y+2*h//3),min(w//8,h//8),(0,255,0),2) #鼻子轮廓
   cv2.rectangle(frame, (x, y), (x+w, y+h), (0,0,255),2)   #矩形轮廓

 cv2.imshow("Face_Detect",frame)
 #显示轮廓
 success,frame=cap.read()#如正常则读入下一帧

 c=chr(key&255)
 if c in ['q','Q',chr(27)]:#如果键入‘q'退出循环
  print('exit'\n)
  break#退出循环

 #循环结束则清零
cap.release()
cv2.destroyAllWindows()

运行后如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 基于python3 OpenCV3实现静态图片人脸识别

    本文采用OpenCV3和Python3 来实现静态图片的人脸识别,采用的是Haar文件级联. 首先需要将OpenCV3源代码中找到data文件夹下面的haarcascades文件夹里面包含了所有的OpenCV的人脸检测的XML文件,这些文件可以用于检测静态,视频文件,摄像头视频流中的人脸,找到haarcascades文件夹后,复制里面的XML文件,在你新建的Python脚本文件目录里面建一个名为cascades的文件夹,并把复制的XML文件粘贴到新建的文件夹中一些有人脸的的图片,这个大家可以自行

  • Python3.6.0+opencv3.3.0人脸检测示例

    网上有很多关于Python+opencv人脸检测的例子,并大都附有源程序.但是在实际使用时依然会遇到这样或者那样的问题,在这里给出常见的两种问题及其解决方法. 先给出源代码:(如下) import cv2 import numpy as np cv2.namedWindow("test") cap=cv2.VideoCapture(0) success,frame=cap.read() classifier=cv2.CascadeClassifier("haarcascade

  • python opencv3实现人脸识别(windows)

    本文实例为大家分享了python人脸识别程序,大家可进行测试 #coding:utf-8 import cv2 import sys from PIL import Image def CatchUsbVideo(window_name, camera_idx): cv2.namedWindow(window_name) # 视频来源,可以来自一段已存好的视频,也可以直接来自USB摄像头 cap = cv2.VideoCapture(camera_idx) # 告诉OpenCV使用人脸识别分类器

  • python+opencv实现的简单人脸识别代码示例

    # 源码如下: #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv def detect_object(image): '''检测图片,获取人脸在图片中的坐标''' grayscale = cv.CreateImage((image.width, image.height), 8, 1) cv.CvtColor(image, grayscale, cv.CV_BGR2GR

  • Python+OpenCV人脸检测原理及示例详解

    关于opencv OpenCV 是 Intel 开源计算机视觉库 (Computer Version) .它由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很多通用算法. OpenCV 拥有包括 300 多个 C 函数的跨平台的中.高层 API .它不依赖于其它的外部库 -- 尽管也可以使用某些外部库. OpenCV 对非商业应用和商业应用都是免费 的.同时 OpenCV 提供了对硬件的访问,可以直接访问摄像头,并且 opencv 还提供了一个简单的 GUI(graph

  • 基于python OpenCV实现动态人脸检测

    本文实例为大家分享了python动态人脸检测的具体代码,供大家参考,具体内容如下 直接上代码: 按Q退出 import cv2 import numpy as np cv2.namedWindow("test") cap = cv2.VideoCapture(0) #加载摄像头录制 # cap = cv2.VideoCapture("test.mp4") #打开视频文件 success, frame = cap.read() # classifier = cv2.C

  • Python基于OpenCV实现视频的人脸检测

    本文实例为大家分享了基于OpenCV实现视频的人脸检测具体代码,供大家参考,具体内容如下 前提条件 1.摄像头 2.已安装Python和OpenCV3 代码 import cv2 import sys import logging as log import datetime as dt from time import sleep cascPath = "haarcascade_frontalface_default.xml" faceCascade = cv2.CascadeCla

  • 详解如何用OpenCV + Python 实现人脸识别

    下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等. opencv api 要想使用opencv,就必须先知道其能干什么,怎么做.于是API的重要性便体现出来了.就本例而言,使用到的函数

  • python调用OpenCV实现人脸识别功能

    Python调用OpenCV实现人脸识别,供大家参考,具体内容如下 硬件环境: Win10 64位 软件环境: Python版本:2.7.3 IDE:JetBrains PyCharm 2016.3.2 Python库: 1.1) opencv-python(3.2.0.6) 搭建过程: OpenCV Python库: 1. PyCharm的插件源中选择opencv-python(3.2.0.6)库安装 题外话:Python入门Tips PS1:如何安装whl文件 1.先安装PIP 2.CMD命

  • python利用OpenCV2实现人脸检测

    最近,带领我的学生进行一个URTP项目设计,需要进行人脸识别.由于现在的OpenCV已经到了2.X版本,因此就不想用原来的1.X版本的代码,而网上存在的代码都是1.X版本的代码,尝试自己写一段2.X版本的代码,反复查阅资料,今天终于测试成功(很明显2.X版本的代码要比1.X的代码更简单),供大家好参考,代码如下:(2017年5月12日在python3.6.1下做一简单的修改) import cv2 import numpy as np cv2.namedWindow("test")#命

随机推荐