Spring事务处理Transactional,锁同步和并发线程

Spring事务传播机制和数据库隔离级别

在标准SQL规范中定义了4个事务隔离级别,不同隔离级别对事务处理不同 。

  • 未授权读取(Read Uncommitted): 也称 未提交读。允许脏读取但不允许更新丢失,如果一个事务已经开始写数据则另外一个数据则不允许同时进行写操作但允许其他事务读此行数据。该隔离级别可以通过 “排他写锁”实现。事务隔离的最低级别,仅可保证不读取物理损坏的数据。与READ COMMITTED 隔离级相反,它允许读取已经被其它用户修改但尚未提交确定的数据。
  • 授权读取(Read Committed): 也称提交 读。允许不可重复读取但不允许脏读取。这可以通过“瞬间共享读锁”和“排他写锁”实现,读取数据的事务允许其他事务继续访问该行数据,但是未提交写事务将 会禁止其他事务访问该行。SQL Server 默认的级别。在此隔离级下,SELECT 命令不会返回尚未提交(Committed) 的数据,也不能返回脏数据。
  • 可重复读取(Repeatable Read): 禁止 不可重复读取和脏读取。但是有时可能出现幻影数据,这可以通过“共享读锁”和“排他写锁”实现,读取数据事务将会禁止写事务(但允许读事务),写事务则禁 止任何其他事务。在此隔离级下,用SELECT 命令读取的数据在整个命令执行过程中不会被更改。此选项会影响系统的效能,非必要情况最好不用此隔离级。
  • 串行(Serializable): 也称可串行读。提 供严格的事务隔离,它要求事务序列化执行,事务只能一个接着一个地执行,但不能并发执行。如果仅仅通过“行级锁”是无法实现事务序列化的,必须通过其他机 制保证新插入的数据不会被刚执行查询操作事务访问到。事务隔离的最高级别,事务之间完全隔离。如果事务在可串行读隔离级别上运行,则可以保证任何并发重叠 事务均是串行的。
隔离级别 更新丢失 脏读取 重复读取 幻读
未授权读取 N Y Y Y
授权读取 N N Y Y
可重复读取 N N N Y
串行 N N N N

Spring在TransactionDefinition接口中规定了7种类型的事务传播行为,它们规定了事务方法和事务方法发生嵌套调用时事务如何进行传播:

package org.springframework.transaction.annotation;
import org.springframework.transaction.TransactionDefinition;

/**
 * Enumeration that represents transaction propagation behaviors for use
 * with the {@link Transactional} annotation, corresponding to the
 * {@link TransactionDefinition} interface.
 *
 * @author Colin Sampaleanu
 * @author Juergen Hoeller
 * @since 1.2
 */
public enum Propagation {

    /**
     * Support a current transaction, create a new one if none exists.
     * Analogous to EJB transaction attribute of the same name.
     * <p>This is the default setting of a transaction annotation.
     */
    REQUIRED(TransactionDefinition.PROPAGATION_REQUIRED),

    /**
     * Support a current transaction, execute non-transactionally if none exists.
     * Analogous to EJB transaction attribute of the same name.
     * <p>Note: For transaction managers with transaction synchronization,
     * PROPAGATION_SUPPORTS is slightly different from no transaction at all,
     * as it defines a transaction scope that synchronization will apply for.
     * As a consequence, the same resources (JDBC Connection, Hibernate Session, etc)
     * will be shared for the entire specified scope. Note that this depends on
     * the actual synchronization configuration of the transaction manager.
     * @see org.springframework.transaction.support.AbstractPlatformTransactionManager#setTransactionSynchronization
     */
    SUPPORTS(TransactionDefinition.PROPAGATION_SUPPORTS),

    /**
     * Support a current transaction, throw an exception if none exists.
     * Analogous to EJB transaction attribute of the same name.
     */
    MANDATORY(TransactionDefinition.PROPAGATION_MANDATORY),

    /**
     * Create a new transaction, and suspend the current transaction if one exists.
     * Analogous to the EJB transaction attribute of the same name.
     * <p>Note: Actual transaction suspension will not work out-of-the-box on
     * all transaction managers. This in particular applies to JtaTransactionManager,
     * which requires the {@code javax.transaction.TransactionManager} to be
     * made available it to it (which is server-specific in standard J2EE).
     * @see org.springframework.transaction.jta.JtaTransactionManager#setTransactionManager
     */
    REQUIRES_NEW(TransactionDefinition.PROPAGATION_REQUIRES_NEW),

    /**
     * Execute non-transactionally, suspend the current transaction if one exists.
     * Analogous to EJB transaction attribute of the same name.
     * <p>Note: Actual transaction suspension will not work on out-of-the-box
     * on all transaction managers. This in particular applies to JtaTransactionManager,
     * which requires the {@code javax.transaction.TransactionManager} to be
     * made available it to it (which is server-specific in standard J2EE).
     * @see org.springframework.transaction.jta.JtaTransactionManager#setTransactionManager
     */
    NOT_SUPPORTED(TransactionDefinition.PROPAGATION_NOT_SUPPORTED),

    /**
     * Execute non-transactionally, throw an exception if a transaction exists.
     * Analogous to EJB transaction attribute of the same name.
     */
    NEVER(TransactionDefinition.PROPAGATION_NEVER),

    /**
     * Execute within a nested transaction if a current transaction exists,
     * behave like PROPAGATION_REQUIRED else. There is no analogous feature in EJB.
     * <p>Note: Actual creation of a nested transaction will only work on specific
     * transaction managers. Out of the box, this only applies to the JDBC
     * DataSourceTransactionManager when working on a JDBC 3.0 driver.
     * Some JTA providers might support nested transactions as well.
     * @see org.springframework.jdbc.datasource.DataSourceTransactionManager
        通过创建Savepoint实现嵌套事务,达到内层事务若抛出异常(unchecked exception)则回滚到savepoint处,但不影响外层事务;外层事务的回滚会一起回滚内层事务;
     */
    NESTED(TransactionDefinition.PROPAGATION_NESTED);

    private final int value;

    Propagation(int value) { this.value = value; }

    public int value() { return this.value; }

}
/*
 * Copyright 2002-2012 the original author or authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.springframework.transaction;

import java.sql.Connection;

/**
 * Interface that defines Spring-compliant transaction properties.
 * Based on the propagation behavior definitions analogous to EJB CMT attributes.
 *
 * <p>Note that isolation level and timeout settings will not get applied unless
 * an actual new transaction gets started. As only {@link #PROPAGATION_REQUIRED},
 * {@link #PROPAGATION_REQUIRES_NEW} and {@link #PROPAGATION_NESTED} can cause
 * that, it usually doesn't make sense to specify those settings in other cases.
 * Furthermore, be aware that not all transaction managers will support those
 * advanced features and thus might throw corresponding exceptions when given
 * non-default values.
 *
 * <p>The {@link #isReadOnly() read-only flag} applies to any transaction context,
 * whether backed by an actual resource transaction or operating non-transactionally
 * at the resource level. In the latter case, the flag will only apply to managed
 * resources within the application, such as a Hibernate {@code Session}.
 *
 * @author Juergen Hoeller
 * @since 08.05.2003
 * @see PlatformTransactionManager#getTransaction(TransactionDefinition)
 * @see org.springframework.transaction.support.DefaultTransactionDefinition
 * @see org.springframework.transaction.interceptor.TransactionAttribute
 */
public interface TransactionDefinition {

    /**
     * Support a current transaction; create a new one if none exists.
     * Analogous to the EJB transaction attribute of the same name.
     * <p>This is typically the default setting of a transaction definition,
     * and typically defines a transaction synchronization scope.
     */
    int PROPAGATION_REQUIRED = 0;

    /**
     * Support a current transaction; execute non-transactionally if none exists.
     * Analogous to the EJB transaction attribute of the same name.
     * <p><b>NOTE:</b> For transaction managers with transaction synchronization,
     * {@code PROPAGATION_SUPPORTS} is slightly different from no transaction
     * at all, as it defines a transaction scope that synchronization might apply to.
     * As a consequence, the same resources (a JDBC {@code Connection}, a
     * Hibernate {@code Session}, etc) will be shared for the entire specified
     * scope. Note that the exact behavior depends on the actual synchronization
     * configuration of the transaction manager!
     * <p>In general, use {@code PROPAGATION_SUPPORTS} with care! In particular, do
     * not rely on {@code PROPAGATION_REQUIRED} or {@code PROPAGATION_REQUIRES_NEW}
     * <i>within</i> a {@code PROPAGATION_SUPPORTS} scope (which may lead to
     * synchronization conflicts at runtime). If such nesting is unavoidable, make sure
     * to configure your transaction manager appropriately (typically switching to
     * "synchronization on actual transaction").
     * @see org.springframework.transaction.support.AbstractPlatformTransactionManager#setTransactionSynchronization
     * @see org.springframework.transaction.support.AbstractPlatformTransactionManager#SYNCHRONIZATION_ON_ACTUAL_TRANSACTION
     */
    int PROPAGATION_SUPPORTS = 1;

    /**
     * Support a current transaction; throw an exception if no current transaction
     * exists. Analogous to the EJB transaction attribute of the same name.
     * <p>Note that transaction synchronization within a {@code PROPAGATION_MANDATORY}
     * scope will always be driven by the surrounding transaction.
     */
    int PROPAGATION_MANDATORY = 2;

    /**
     * Create a new transaction, suspending the current transaction if one exists.
     * Analogous to the EJB transaction attribute of the same name.
     * <p><b>NOTE:</b> Actual transaction suspension will not work out-of-the-box
     * on all transaction managers. This in particular applies to
     * {@link org.springframework.transaction.jta.JtaTransactionManager},
     * which requires the {@code javax.transaction.TransactionManager}
     * to be made available it to it (which is server-specific in standard J2EE).
     * <p>A {@code PROPAGATION_REQUIRES_NEW} scope always defines its own
     * transaction synchronizations. Existing synchronizations will be suspended
     * and resumed appropriately.
     * @see org.springframework.transaction.jta.JtaTransactionManager#setTransactionManager
     */
    int PROPAGATION_REQUIRES_NEW = 3;

    /**
     * Do not support a current transaction; rather always execute non-transactionally.
     * Analogous to the EJB transaction attribute of the same name.
     * <p><b>NOTE:</b> Actual transaction suspension will not work out-of-the-box
     * on all transaction managers. This in particular applies to
     * {@link org.springframework.transaction.jta.JtaTransactionManager},
     * which requires the {@code javax.transaction.TransactionManager}
     * to be made available it to it (which is server-specific in standard J2EE).
     * <p>Note that transaction synchronization is <i>not</i> available within a
     * {@code PROPAGATION_NOT_SUPPORTED} scope. Existing synchronizations
     * will be suspended and resumed appropriately.
     * @see org.springframework.transaction.jta.JtaTransactionManager#setTransactionManager
     */
    int PROPAGATION_NOT_SUPPORTED = 4;

    /**
     * Do not support a current transaction; throw an exception if a current transaction
     * exists. Analogous to the EJB transaction attribute of the same name.
     * <p>Note that transaction synchronization is <i>not</i> available within a
     * {@code PROPAGATION_NEVER} scope.
     */
    int PROPAGATION_NEVER = 5;

    /**
     * Execute within a nested transaction if a current transaction exists,
     * behave like {@link #PROPAGATION_REQUIRED} else. There is no analogous
     * feature in EJB.
     * <p><b>NOTE:</b> Actual creation of a nested transaction will only work on
     * specific transaction managers. Out of the box, this only applies to the JDBC
     * {@link org.springframework.jdbc.datasource.DataSourceTransactionManager}
     * when working on a JDBC 3.0 driver. Some JTA providers might support
     * nested transactions as well.
     * @see org.springframework.jdbc.datasource.DataSourceTransactionManager
     */
    int PROPAGATION_NESTED = 6;

    /**
     * Use the default isolation level of the underlying datastore.
     * All other levels correspond to the JDBC isolation levels.
     * @see java.sql.Connection
     */
    int ISOLATION_DEFAULT = -1;

    /**
     * Indicates that dirty reads, non-repeatable reads and phantom reads
     * can occur.
     * <p>This level allows a row changed by one transaction to be read by another
     * transaction before any changes in that row have been committed (a "dirty read").
     * If any of the changes are rolled back, the second transaction will have
     * retrieved an invalid row.
     * @see java.sql.Connection#TRANSACTION_READ_UNCOMMITTED
     */
    int ISOLATION_READ_UNCOMMITTED = Connection.TRANSACTION_READ_UNCOMMITTED;

    /**
     * Indicates that dirty reads are prevented; non-repeatable reads and
     * phantom reads can occur.
     * <p>This level only prohibits a transaction from reading a row
     * with uncommitted changes in it.
     * @see java.sql.Connection#TRANSACTION_READ_COMMITTED
     */
    int ISOLATION_READ_COMMITTED = Connection.TRANSACTION_READ_COMMITTED;

    /**
     * Indicates that dirty reads and non-repeatable reads are prevented;
     * phantom reads can occur.
     * <p>This level prohibits a transaction from reading a row with uncommitted changes
     * in it, and it also prohibits the situation where one transaction reads a row,
     * a second transaction alters the row, and the first transaction re-reads the row,
     * getting different values the second time (a "non-repeatable read").
     * @see java.sql.Connection#TRANSACTION_REPEATABLE_READ
     */
    int ISOLATION_REPEATABLE_READ = Connection.TRANSACTION_REPEATABLE_READ;

    /**
     * Indicates that dirty reads, non-repeatable reads and phantom reads
     * are prevented.
     * <p>This level includes the prohibitions in {@link #ISOLATION_REPEATABLE_READ}
     * and further prohibits the situation where one transaction reads all rows that
     * satisfy a {@code WHERE} condition, a second transaction inserts a row
     * that satisfies that {@code WHERE} condition, and the first transaction
     * re-reads for the same condition, retrieving the additional "phantom" row
     * in the second read.
     * @see java.sql.Connection#TRANSACTION_SERIALIZABLE
     */
    int ISOLATION_SERIALIZABLE = Connection.TRANSACTION_SERIALIZABLE;

    /**
     * Use the default timeout of the underlying transaction system,
     * or none if timeouts are not supported.
     */
    int TIMEOUT_DEFAULT = -1;

    /**
     * Return the propagation behavior.
     * <p>Must return one of the {@code PROPAGATION_XXX} constants
     * defined on {@link TransactionDefinition this interface}.
     * @return the propagation behavior
     * @see #PROPAGATION_REQUIRED
     * @see org.springframework.transaction.support.TransactionSynchronizationManager#isActualTransactionActive()
     */
    int getPropagationBehavior();

    /**
     * Return the isolation level.
     * <p>Must return one of the {@code ISOLATION_XXX} constants
     * defined on {@link TransactionDefinition this interface}.
     * <p>Only makes sense in combination with {@link #PROPAGATION_REQUIRED}
     * or {@link #PROPAGATION_REQUIRES_NEW}.
     * <p>Note that a transaction manager that does not support custom isolation levels
     * will throw an exception when given any other level than {@link #ISOLATION_DEFAULT}.
     * @return the isolation level
     */
    int getIsolationLevel();

    /**
     * Return the transaction timeout.
     * <p>Must return a number of seconds, or {@link #TIMEOUT_DEFAULT}.
     * <p>Only makes sense in combination with {@link #PROPAGATION_REQUIRED}
     * or {@link #PROPAGATION_REQUIRES_NEW}.
     * <p>Note that a transaction manager that does not support timeouts will throw
     * an exception when given any other timeout than {@link #TIMEOUT_DEFAULT}.
     * @return the transaction timeout
     */
    int getTimeout();

    /**
     * Return whether to optimize as a read-only transaction.
     * <p>The read-only flag applies to any transaction context, whether
     * backed by an actual resource transaction
     * ({@link #PROPAGATION_REQUIRED}/{@link #PROPAGATION_REQUIRES_NEW}) or
     * operating non-transactionally at the resource level
     * ({@link #PROPAGATION_SUPPORTS}). In the latter case, the flag will
     * only apply to managed resources within the application, such as a
     * Hibernate {@code Session}.
     <<     * <p>This just serves as a hint for the actual transaction subsystem;
     * it will <i>not necessarily</i> cause failure of write access attempts.
     * A transaction manager which cannot interpret the read-only hint will
     * <i>not</i> throw an exception when asked for a read-only transaction.
     * @return {@code true} if the transaction is to be optimized as read-only
     * @see org.springframework.transaction.support.TransactionSynchronization#beforeCommit(boolean)
     * @see org.springframework.transaction.support.TransactionSynchronizationManager#isCurrentTransactionReadOnly()
     */
    boolean isReadOnly();

    /**
     * Return the name of this transaction. Can be {@code null}.
     * <p>This will be used as the transaction name to be shown in a
     * transaction monitor, if applicable (for example, WebLogic's).
     * <p>In case of Spring's declarative transactions, the exposed name will be
     * the {@code fully-qualified class name + "." + method name} (by default).
     * @return the name of this transaction
     * @see org.springframework.transaction.interceptor.TransactionAspectSupport
     * @see org.springframework.transaction.support.TransactionSynchronizationManager#getCurrentTransactionName()
     */
    String getName();

}

PROPAGATION_REQUIRES_NEW :

启动一个新的, 不依赖于环境的 "内部" 事务.

这个事务将被完全 commited 或 rolled back 而不依赖于外部事务, 它拥有自己的隔离范围, 自己的锁, 等等. 当内部事务开始执行时, 外部事务将被挂起, 内务事务结束时, 外部事务将继续执行.

PROPAGATION_NESTED :

如果外部事务 commit, 嵌套事务也会被 commit;

如果外部事务 roll back, 嵌套事务也会被 roll back 。

开始一个 "嵌套的" 事务, 它是已经存在事务的一个真正的子事务. 嵌套事务开始执行时, 它将取得一个 savepoint. 如果这个嵌套事务失败, 我们将回滚到此 savepoint. 嵌套事务是外部事务的一部分, 只有外部事务结束后它才会被提交.

代码例子:

@Transactional(propagation=Propagation.NESTED)
@Transactional(propagation=Propagation.PROPAGATION_REQUIRES_NEW)

ServiceA{
  @Autowired
  ServiceB serviceB;
  @Transactional(propagation=Propagation.NESTED)
  public void method1(){
    serviceB.method2();
    int i = 1/0;
  }
}

ServiceB{
  @Transactional(propagation=Propagation.NESTED)
  public void method2(){
   xxxxxx
  }
}

因为method1使用 @Transactional(propagation=Propagation.NESTED),当执行method1时,会抛出异常,method2()也会被回滚;

如果method2()用PROPAGATION_REQUIRES_NEW:

ServiceB{
@Transactional(propagation=Propagation.PROPAGATION_REQUIRES_NEW)
  public void method2(){
   xxxxxx
  }
}

那么method2不会因为method1抛出异常而回滚。

不管是什么类型的嵌套事务,一个线程只有一个事务,线程结束的时候才提交事务,包括嵌套事务,即使嵌套事务是REQUIRES_NEW,也不是嵌套事务的方法结束就提交事务的,一定是等到外部事务方法结束,整个线程结束才一起提交的。

在相同线程中进行相互嵌套调用的事务方法工作于相同的事务中。如果这些相互嵌套调用的方法工作在不同的线程中,则不同线程下的事务方法工作在独立的事务中。

而锁存在于事务里,锁的生命周期也是一个线程,在一个线程里可多次取得同一个锁。

如果事务加在外部方法A,在内部方法里面有synchronized代码块B,那么当B执行完时,事务还未提交,其他线程进入synchronized代码块B后,读取的库存数据不是最新的。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 使用spring框架实现数据库事务处理方式

    目录 使用spring框架实现数据库事务处理 JDBC对数据库事务处理的支持 JDBC定义了五种事务隔离级别来解决这些并发导致的问题 在spring框架中调用一个数据库事务处理分三步走: spring 事务实现方式有哪些 在代码中调用 commit().rollback()等事务管理相关的方法 TransactionProxyFactoryBean 的声明式事务管理 注解 @Transactional 的声明式事务管理 Aspectj AOP 配置(注解)事务 使用spring框架实现数据库事务

  • 一文搞懂spring boot本地事务@Transactional参数

    目录 1. 本地事务 1.1. 基本概念 1.2. 隔离级别 1.3. 相关命令 1.4. 传播行为 1.4.1. 伪代码练习 1.4.2. 改造商品新增代码 1.4.3. 测试1:同一service + requires_new 1.4.4. 测试2:不同service + requires_new 1.4.5. 在同一个service中使用传播行为 1.5. 回滚策略 1.5.1. 测试编译时异常不回滚 1.5.2. 定制回滚策略 1.6. 超时事务 1.7. 只读事务 1. 本地事务 商品

  • Springboot在有锁的情况下正确使用事务的实现代码

    1. 概述 老话说的好:想要赚钱,就去看看有钱人有什么需求,因为有钱人钱多,所以赚的多. 言归正传,在Java项目的研发中,"锁"这个词并不陌生,最经典的使用场景是商品的超卖问题. 很多Java小白,通常会认为,给代码加上一把"锁",就能解决多扣库存问题,却忽略了数据库事务的问题,今天我们就来做一个实验,分析一下商品超卖问题. 2. 场景介绍 有一款商品,库存只剩1件. 购买商品时,做三个动作,一是检查库存,二是扣库存,三是生成订单,三个动作在一个事务中执行. 模拟

  • spring声明式事务 @Transactional 不回滚的多种情况以及解决方案

    目录 一. spring 事务原理 问题一.@Transactional 应该加到什么地方,如果加到Controller会回滚吗? 问题二. @Transactional 注解中用不用加rollbackFor = Exception.class 这个属性值 问题三:事务调用嵌套问题具体结果如下代码: 四.总结 五. 参考链接 本文是基于springboot完成测试测试代码地址如下: https://github.com/Dr-Water/springboot-action/tree/master

  • Spring TransactionalEventListener事务未提交读取不到数据的解决

    目录 一.背景 二.问题分析 2.1.mysql隔离级别 2.2.问题原因分析 三.解决问题方案 3.1.方式一 3.2.方式二 四.使用案例 一.背景 业务处理过程,发现了以下问题,代码一是原代码能正常执行,代码二是经过迭代一次非正常执行代码 代码一:以下代码开启线程后,代码正常执行 ThreadPoolExecutor executor = new ThreadPoolExecutor(5, 10, 200, TimeUnit.MILLISECONDS, new ArrayBlockingQ

  • 基于Spring中的事务@Transactional细节与易错点、幻读

    目录 为什么要使用事务? 如何使用事务? 事务的传播带来的几种结果 两个特例 事务传播属性propagation 数据库隔离级别 1.未提交读(会有脏读的现象) 2.已提交读 3.可重复读 (有可能覆盖掉其他事务的操作) 4.串行化(没有并发操作) Spring事务隔离级别比数据库事务隔离级别多一个default ACID,事务内的一组操作具有 原子性 .一致性.隔离性.持久性. Atomicity(原子性):一个事务(transaction)中的所有操作,要么全部完成,要么全部不完成,不会结束

  • Spring事务处理Transactional,锁同步和并发线程

    Spring事务传播机制和数据库隔离级别 在标准SQL规范中定义了4个事务隔离级别,不同隔离级别对事务处理不同 . 未授权读取(Read Uncommitted): 也称 未提交读.允许脏读取但不允许更新丢失,如果一个事务已经开始写数据则另外一个数据则不允许同时进行写操作但允许其他事务读此行数据.该隔离级别可以通过 "排他写锁"实现.事务隔离的最低级别,仅可保证不读取物理损坏的数据.与READ COMMITTED 隔离级相反,它允许读取已经被其它用户修改但尚未提交确定的数据. 授权读取

  • 详谈ThreadLocal-单例模式下高并发线程安全

    目录 ThreadLocal-单例模式下高并发线程安全 为了解决线程安全的问题,我们有3个思路: 多线程中的ThreadLocal 1.ThreadLocal概述 2. ThreadLocal简单实用 3.ThreadLocal的内部原理 3.1 get方法 3.2 set方法 3.3 remove方法 3.4 initialValue方法 4. 总结 5. ThreadLocalMap引发的内存泄漏 ThreadLocal-单例模式下高并发线程安全 在多例的情况下,每个对象在堆中声明内存空间,

  • Java中同步与并发用法分析

    本文较为详细的分析了Java中同步与并发的用法.分享给大家供大家参考.具体分析如下: 1.同步容器类包括两部分:vector和hashtable 另一类是同步包装类,由Collections.synchronizedXXX创建.同步容器对容器的所有状态进行串行访问,从而实现线程安全. 它们存在如下问题: a) 对于符合操作,需要额外的锁保护.比如迭代,缺少则添加等条件运算. b) toString,hashCode,equals都会间接的调用迭代,都需要注意并发.   2.java5.0中的并发

  • JPA使用乐观锁应对高并发方式

    目录 JPA使用乐观锁应对高并发 高并发系统的挑战 悲观锁的问题 乐观锁是个好东西 给数据库添加乐观锁 乐观锁 -业务判断 解决高并发 JPA使用乐观锁应对高并发 高并发系统的挑战 在部署分布式系统时,我们通常把多个微服务部署在内网集群中,再用API网关聚合起来对外提供.为了做负载均衡,通常会对每个微服务都启动多个运行实例,通过注册中心去调用. 那么问题来了,因为有多个实例运行都是同一个应用,虽然微服务网关会把每一个请求只转发给一个实例,但当面对高并发时,但它们仍然可能同时操作同一个数据库表,这

  • Java实现synchronized锁同步机制

    目录 synchronized 实现原理 适应性自旋(Adaptive Spinning) 锁升级 Java 对象头 偏向锁(Biased Locking) 偏向锁获取 偏向锁释放 关闭偏向锁 轻量级锁(Lightweight Locking) 轻量级锁获取 轻量级锁解锁 重量级锁 锁消除(Lock Elimination) 锁粗化(Lock Coarsening) 文末总结 synchronized 是 java 内置的同步锁实现,一个关键字实现对共享资源的锁定.synchronized 有

  • Yii+MYSQL锁表防止并发情况下重复数据的方法

    本文实例讲述了Yii+MYSQL锁表防止并发情况下重复数据的方法.分享给大家供大家参考,具体如下: lock table 读锁定 如果一个线程获得在一个表上的read锁,那么该线程和所有其他线程只能从表中读数据,不能进行任何写操作. lock tables user read;//读锁定表 unlock tables;//解锁 lock tables user read local;//本地读锁定表,其他线程的insert未被阻塞,update操作被阻塞 lock table 写锁定 如果一个线

  • C#实现控制线程池最大数并发线程

    1. 实验目的: 使用线程池的时候,有时候需要考虑服务器的最大线程数目和程序最快执行所有业务逻辑的取舍. 并非逻辑线程越多也好,而且新的逻辑线程必须会在线程池的等待队列中等待 ,直到线程池中工作的线程执行完毕, 才会有系统线程取出等待队列中的逻辑线程,进行CPU运算. 2.  解决问题: <a>如果不考虑服务器实际可支持的最大并行线程个数,程序不停往线程池申请新的逻辑线程,这个时候我们可以发现CPU的使用率会不断飙升,并且内存.网络带宽占用也会随着逻辑线程在CPU队列中堆积,而不断增大. &l

  • Spring中@Transactional用法详细介绍

    Spring中@Transactional用法详细介绍 引言: 在spring中@Transactional提供一种控制事务管理的快捷手段,但是很多人都只是@Transactional简单使用,并未深入了解,其各个配置项的使用方法,本文将深入讲解各个配置项的使用. 1.  @Transactional的定义 Spring中的@Transactional基于动态代理的机制,提供了一种透明的事务管理机制,方便快捷解决在开发中碰到的问题.在现实中,实际的问题往往比我们预期的要复杂很多,这就要求对@Tr

  • C#线程执行超时处理与并发线程数控制实例

    本文实例讲述了C#线程执行超时处理与并发线程数控制的方法.分享给大家供大家参考.具体实现方法如下: 特别说明: 1.为了测试方便,这里对存储过程的执行是模拟的 2.这里限制了并发执行存储过程的最大个数,但并没有对并发线程数进行控制,与文章标题略有不符,但程序稍做改动即可控制并发线程数 代码如下: 复制代码 代码如下: using System; using System.Collections.Generic; using System.ComponentModel; using System.

  • spring的@Transactional注解用法解读

    概述 事务管理对于企业应用来说是至关重要的,即使出现异常情况,它也可以保证数据的一致性. Spring Framework对事务管理提供了一致的抽象,其特点如下: 为不同的事务API提供一致的编程模型,比如JTA(Java Transaction API), JDBC, Hibernate, JPA(Java Persistence API和JDO(Java Data Objects) 支持声明式事务管理,特别是基于注解的声明式事务管理,简单易用 提供比其他事务API如JTA更简单的编程式事务管

随机推荐