浅谈Pytorch中的自动求导函数backward()所需参数的含义

正常来说backward( )函数是要传入参数的,一直没弄明白backward需要传入的参数具体含义,但是没关系,生命在与折腾,咱们来折腾一下,嘿嘿。

对标量自动求导

首先,如果out.backward()中的out是一个标量的话(相当于一个神经网络有一个样本,这个样本有两个属性,神经网络有一个输出)那么此时我的backward函数是不需要输入任何参数的。

import torch
from torch.autograd import Variable

a = Variable(torch.Tensor([2,3]),requires_grad=True)
b = a + 3
c = b * 3
out = c.mean()
out.backward()
print('input:')
print(a.data)
print('output:')
print(out.data.item())
print('input gradients are:')
print(a.grad)

运行结果:

不难看出,我们构建了这样的一个函数:

所以其求导也很容易看出:

这是对其进行标量自动求导的结果.

对向量自动求导

如果out.backward()中的out是一个向量(或者理解成1xN的矩阵)的话,我们对向量进行自动求导,看看会发生什么?

先构建这样的一个模型(相当于一个神经网络有一个样本,这个样本有两个属性,神经网络有两个输出):

import torch
from torch.autograd import Variable

a = Variable(torch.Tensor([[2.,4.]]),requires_grad=True)
b = torch.zeros(1,2)
b[0,0] = a[0,0] ** 2
b[0,1] = a[0,1] ** 3
out = 2 * b
#其参数要传入和out维度一样的矩阵
out.backward(torch.FloatTensor([[1.,1.]]))
print('input:')
print(a.data)
print('output:')
print(out.data)
print('input gradients are:')
print(a.grad)

模型也很简单,不难看出out求导出来的雅克比应该是:

因为a1 = 2,a2 = 4,所以上面的矩阵应该是:

运行的结果:

嗯,的确是8和96,但是仔细想一想,和咱们想要的雅克比矩阵的形式也不一样啊。难道是backward自动把0给省略了?

咱们继续试试,这次在上一个模型的基础上进行小修改,如下:

import torch
from torch.autograd import Variable

a = Variable(torch.Tensor([[2.,4.]]),requires_grad=True)
b = torch.zeros(1,2)
b[0,0] = a[0,0] ** 2 + a[0,1]
b[0,1] = a[0,1] ** 3 + a[0,0]
out = 2 * b
#其参数要传入和out维度一样的矩阵
out.backward(torch.FloatTensor([[1.,1.]]))
print('input:')
print(a.data)
print('output:')
print(out.data)
print('input gradients are:')
print(a.grad)

可以看出这个模型的雅克比应该是:

运行一下:

等等,什么鬼?正常来说不应该是

么?我是谁?我再哪?为什么就给我2个数,而且是 8 + 2 = 10 ,96 + 2 = 98 。难道都是加的 2 ?想一想,刚才咱们backward中传的参数是 [ [ 1 , 1 ] ],难道安装这个关系对应求和了?咱们换个参数来试一试,程序中只更改传入的参数为[ [ 1 , 2 ] ]:

import torch
from torch.autograd import Variable

a = Variable(torch.Tensor([[2.,4.]]),requires_grad=True)
b = torch.zeros(1,2)
b[0,0] = a[0,0] ** 2 + a[0,1]
b[0,1] = a[0,1] ** 3 + a[0,0]
out = 2 * b
#其参数要传入和out维度一样的矩阵
out.backward(torch.FloatTensor([[1.,2.]]))
print('input:')
print(a.data)
print('output:')
print(out.data)
print('input gradients are:')
print(a.grad)

嗯,这回可以理解了,我们传入的参数,是对原来模型正常求导出来的雅克比矩阵进行线性操作,可以把我们传进的参数(设为arg)看成一个列向量,那么我们得到的结果就是:

在这个题目中,我们得到的实际是:

看起来一切完美的解释了,但是就在我刚刚打字的一刻,我意识到官方文档中说k.backward()传入的参数应该和k具有相同的维度,所以如果按上述去解释是解释不通的。哪里出问题了呢?

仔细看了一下,原来是这样的:在对雅克比矩阵进行线性操作的时候,应该把我们传进的参数(设为arg)看成一个行向量(不是列向量),那么我们得到的结果就是:

也就是:

这回我们就解释的通了。

现在我们来输出一下雅克比矩阵吧,为了不引起歧义,我们让雅克比矩阵的每个数值都不一样(一开始分析错了就是因为雅克比矩阵中有相同的数据),所以模型小改动如下:

import torch
from torch.autograd import Variable

a = Variable(torch.Tensor([[2.,4.]]),requires_grad=True)
b = torch.zeros(1,2)
b[0,0] = a[0,0] ** 2 + a[0,1]
b[0,1] = a[0,1] ** 3 + a[0,0] * 2
out = 2 * b
#其参数要传入和out维度一样的矩阵
out.backward(torch.FloatTensor([[1,0]]),retain_graph=True)
A_temp = copy.deepcopy(a.grad)
a.grad.zero_()
out.backward(torch.FloatTensor([[0,1]]))
B_temp = a.grad
print('jacobian matrix is:')
print(torch.cat( (A_temp,B_temp),0 ))

如果没问题的话咱们的雅克比矩阵应该是 [ [ 8 , 2 ] , [ 4 , 96 ] ]

好了,下面是见证奇迹的时刻了,不要眨眼睛奥,千万不要眨眼睛… 3 2 1 砰…

好了,现在总结一下:因为经过了复杂的神经网络之后,out中每个数值都是由很多输入样本的属性(也就是输入数据)线性或者非线性组合而成的,那么out中的每个数值和输入数据的每个数值都有关联,也就是说【out】中的每个数都可以对【a】中每个数求导,那么我们backward()的参数[k1,k2,k3…kn]的含义就是:

也可以理解成每个out分量对an求导时的权重。

对矩阵自动求导

现在,如果out是一个矩阵呢?

下面的例子也可以理解为:相当于一个神经网络有两个样本,每个样本有两个属性,神经网络有两个输出。

import torch
from torch.autograd import Variable
from torch import nn

a = Variable(torch.FloatTensor([[2,3],[1,2]]),requires_grad=True)
w = Variable( torch.zeros(2,1),requires_grad=True )
out = torch.mm(a,w)
out.backward(torch.FloatTensor([[1.],[1.]]),retain_graph=True)
print("gradients are:{}".format(w.grad.data))

如果前面的例子理解了,那么这个也很好理解,backward输入的参数k是一个2x1的矩阵,2代表的就是样本数量,就是在前面的基础上,再对每个样本进行加权求和。结果是:

如果有兴趣,也可以拓展一下多个样本的多分类问题,猜一下k的维度应该是【输入样本的个数 * 分类的个数】

好啦,纠结我好久的pytorch自动求导原理算是彻底搞懂啦~~~

以上这篇浅谈Pytorch中的自动求导函数backward()所需参数的含义就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 浅谈对pytroch中torch.autograd.backward的思考

    反向传递法则是深度学习中最为重要的一部分,torch中的backward可以对计算图中的梯度进行计算和累积 这里通过一段程序来演示基本的backward操作以及需要注意的地方 >>> import torch >>> from torch.autograd import Variable >>> x = Variable(torch.ones(2,2), requires_grad=True) >>> y = x + 2 >&g

  • 浅谈Pytorch中的自动求导函数backward()所需参数的含义

    正常来说backward( )函数是要传入参数的,一直没弄明白backward需要传入的参数具体含义,但是没关系,生命在与折腾,咱们来折腾一下,嘿嘿. 对标量自动求导 首先,如果out.backward()中的out是一个标量的话(相当于一个神经网络有一个样本,这个样本有两个属性,神经网络有一个输出)那么此时我的backward函数是不需要输入任何参数的. import torch from torch.autograd import Variable a = Variable(torch.Te

  • 浅谈Pytorch中的torch.gather函数的含义

    pytorch中的gather函数 pytorch比tensorflow更加编程友好,所以准备用pytorch试着做最近要做的一些实验. 立个flag开始学习pytorch,新开一个分类整理学习pytorch中的一些踩到的泥坑. 今天刚开始接触,读了一下documentation,写一个一开始每太搞懂的函数gather b = torch.Tensor([[1,2,3],[4,5,6]]) print b index_1 = torch.LongTensor([[0,1],[2,0]]) ind

  • Pytorch中的自动求梯度机制和Variable类实例

    自动求导机制是每一个深度学习框架中重要的性质,免去了手动计算导数,下面用代码介绍并举例说明Pytorch的自动求导机制. 首先介绍Variable,Variable是对Tensor的一个封装,操作和Tensor是一样的,但是每个Variable都有三个属性:Varibale的Tensor本身的.data,对应Tensor的梯度.grad,以及这个Variable是通过什么方式得到的.grad_fn,根据最新消息,在pytorch0.4更新后,torch和torch.autograd.Variab

  • 浅谈pytorch中的BN层的注意事项

    最近修改一个代码的时候,当使用网络进行推理的时候,发现每次更改测试集的batch size大小竟然会导致推理结果不同,甚至产生错误结果,后来发现在网络中定义了BN层,BN层在训练过程中,会将一个Batch的中的数据转变成正太分布,在推理过程中使用训练过程中的参数对数据进行处理,然而网络并不知道你是在训练还是测试阶段,因此,需要手动的加上,需要在测试和训练阶段使用如下函数. model.train() or model.eval() BN类的定义见pytorch中文参考文档 补充知识:关于pyto

  • 浅谈PyTorch中in-place operation的含义

    in-place operation在pytorch中是指改变一个tensor的值的时候,不经过复制操作,而是直接在原来的内存上改变它的值.可以把它成为原地操作符. 在pytorch中经常加后缀"_"来代表原地in-place operation,比如说.add_() 或者.scatter().python里面的+=,*=也是in-place operation. 下面是正常的加操作,执行结束加操作之后x的值没有发生变化: import torch x=torch.rand(2) #t

  • 浅谈pytorch中torch.max和F.softmax函数的维度解释

    在利用torch.max函数和F.Ssoftmax函数时,对应该设置什么维度,总是有点懵,遂总结一下: 首先看看二维tensor的函数的例子: import torch import torch.nn.functional as F input = torch.randn(3,4) print(input) tensor([[-0.5526, -0.0194, 2.1469, -0.2567], [-0.3337, -0.9229, 0.0376, -0.0801], [ 1.4721, 0.1

  • 浅谈Redis中的自动过期机制

    目录 Redis中的自动过期机制 一.使用Redis Key自动过期机制 二.SpringBoot整合key失效监听 Redis中的自动过期机制 实现需求:处理订单过期自动取消,比如下单30分钟未支付自动更改订单状态 1.使用Redis Key自动过期出发事件通知2.使用定时任务30分钟后检查3.按照每分钟轮训检查 CREATE TABLE `order_number` ( `id` int(11) NOT NULL AUTO_INCREMENT, `order_name` varchar(25

  • 浅谈Pytorch中autograd的若干(踩坑)总结

    关于Variable和Tensor 旧版本的Pytorch中,Variable是对Tensor的一个封装:在Pytorch大于v0.4的版本后,Varible和Tensor合并了,意味着Tensor可以像旧版本的Variable那样运行,当然新版本中Variable封装仍旧可以用,但是对Varieble操作返回的将是一个Tensor. import torch as t from torch.autograd import Variable a = t.ones(3,requires_grad=

  • 浅谈pytorch中stack和cat的及to_tensor的坑

    初入计算机视觉遇到的一些坑 1.pytorch中转tensor x=np.random.randint(10,100,(10,10,10)) x=TF.to_tensor(x) print(x) 这个函数会对输入数据进行自动归一化,比如有时候我们需要将0-255的图片转为numpy类型的数据,则会自动转为0-1之间 2.stack和cat之间的差别 stack x=torch.randn((1,2,3)) y=torch.randn((1,2,3)) z=torch.stack((x,y))#默

  • 浅谈pytorch中为什么要用 zero_grad() 将梯度清零

    pytorch中为什么要用 zero_grad() 将梯度清零 调用backward()函数之前都要将梯度清零,因为如果梯度不清零,pytorch中会将上次计算的梯度和本次计算的梯度累加. 这样逻辑的好处是,当我们的硬件限制不能使用更大的bachsize时,使用多次计算较小的bachsize的梯度平均值来代替,更方便,坏处当然是每次都要清零梯度. optimizer.zero_grad() output = net(input) loss = loss_f(output, target) los

随机推荐