Python深度学习之实现卷积神经网络

一、卷积神经网络

Yann LeCun 和Yoshua Bengio在1995年引入了卷积神经网络,也称为卷积网络或CNN。CNN是一种特殊的多层神经网络,用于处理具有明显网格状拓扑的数据。其网络的基础基于称为卷积的数学运算。

卷积神经网络(CNN)的类型

以下是一些不同类型的CNN:

  • 1D CNN:1D CNN 的输入和输出数据是二维的。一维CNN大多用于时间序列。
  • 2D CNNN:2D CNN的输入和输出数据是三维的。我们通常将其用于图像数据问题。
  • 3D CNNN:3D CNN的输入和输出数据是四维的。一般在3D图像上使用3D CNN,例如MRI(磁共振成像),CT扫描(甲CT扫描或计算机断层扫描(以前称为计算机轴向断层或CAT扫描)是一种医学成像 技术中使用的放射学获得用于非侵入性详述的身体的图像诊断的目的)和其他复杂应用程序的DICOM图像(医学数字成像)

二、网络架构

以下是CNN中不同层的网络架构:

  • 卷积层
  • 池化层
  • 全连接层

CNN架构的完整概述

三、卷积

卷积是对名为fg的两个函数的数学计算,得出第三个函数(f * g)。第三个功能揭示了一个形状如何被另一个形状修改。其数学公式如下:

h ( x , y ) = f ( x , y ) ∗ g ( x , y ) h(x,y)=f(x,y)*g(x,y) h(x,y)=f(x,y)∗g(x,y)

卷积有几个非常重要的概念:遮罩。

图中的黄色的部分的就是遮罩

四、卷积层

卷积层是CNN的核心构建块。CNN是具有一些卷积层和其他一些层的神经网络。卷积层具有几个进行卷积运算的过滤器。卷积层应用于二维输入,由于其出色的图像分类工作性能而非常著名。它们基于具有二维输入的小核k的离散卷积,并且该输入可以是另一个卷积层的输出。

五、在Keras中构建卷积层

from keras.models import Sequential
from keras.layers.convolutional import Conv2D
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(32, 32, 3), padding='same', activation='relu'))

上面的代码实现说明:

  • 输出将具有32个特征图。
  • 内核大小将为3x3。
  • 输入形状为32x32,带有三个通道。
  • padding = same。这意味着需要相同尺寸的输出作为输入。
  • 激活指定激活函数。

接下来,使用不同的参数值构建一个卷积层,如下所示

六、池化层

池化层它的功能是减少参数的数量,并减小网络中的空间大小。我们可以通过两种方式实现池化:

  • Max Pooling:表示矩形邻域内的最大输出。Average Pooling:表示矩形邻域的平均输出
  • Max Pooling和Average Pooling减少了图像的空间大小,提供了更少的特征和参数以供进一步计算。

上图显示了带有步幅为2的2X2滤波器的MaxPool池化层。

在Keras中实现Max Pool层,如下所示:

model.add(MaxPooling2D(pool_size =(2,2)))

七、全连接层

全连接层是确定最终预测的所有输入和权重的总和,代表最后一个合并层的输出。它将一层中的每个神经元连接到另一层中的每个神经元

全连接层的主要职责是进行分类。它与softmax激活函数一起使用以得到结果。

用于多类的激活函数是softmax函数,该函数以0和1(总计为1)的概率对完全连接的层进行规范化。

带有非线性函数“ Softmax”的Keras代码如下:

model.add(Dense(10, activation='softmax'))

八、Python实现卷积神经网络

环境Google Colab

导入所有必需的库

import numpy as np
import pandas as pd
from keras.optimizers import SGD
from keras.datasets import cifar10
from keras.models import Sequential
from keras.utils import np_utils as utils
from keras.layers import Dropout, Dense, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D

加载cifar10数据:

(X, y), (X_test, y_test) = cifar10.load_data()
# 规范化数据
X,X_test = X.astype('float32')/ 255.0,X_test.astype('float32')/ 255.0

转换为分类:

y,y_test = utils.to_categorical(y,10),u.to_categorical(y_test,10)

初始化模型:

model = Sequential()

使用以下参数添加卷积层:

  • Features map = 32
  • 内核大小= 3x3
  • 输入形状= 32x32
  • Channels = 3
  • Padding = 3→表示与输入相同的尺寸输出
model.add(Conv2D(32, (3, 3), input_shape=(32, 32, 3), padding='same', activation='relu'))
# Dropout
model.add(Dropout(0.2))
# 添加另一个卷积层 padding ='valid'表示输出尺寸可以采用任何形式
model.add(Conv2D(32,(3,3),activation ='relu',padding ='valid'))
# 添加一个最大池化层
model.add(MaxPooling2D(pool_size =(2,2)))
# 展平
model.add(Flatten())
# Dense层 隐藏单元数为521
model.add(Dense(512, activation='relu'))
# Dropout
model.add(Dropout(0.3))
#output
model.add(Dense(10, activation='softmax'))
# 编译模型 激活器选择SGD
model.compile(loss='categorical_crossentropy',             optimizer=SGD(momentum=0.5, decay=0.0004), metrics=['accuracy'])

25个epochs

model.fit(X, y, validation_data=(X_test, y_test), epochs=25,          batch_size=512)

九、总结

卷积神经网络是一种特殊的多层神经网络,主要用于提取特征。CNN使用称为卷积和池化的两个操作将图像缩小为其基本特征,并使用这些特征适当地理解和分类图像

到此这篇关于Python深度学习之实现卷积神经网络的文章就介绍到这了,更多相关Python实现卷积神经网络内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 基于python神经卷积网络的人脸识别

    本文实例为大家分享了基于神经卷积网络的人脸识别,供大家参考,具体内容如下 1.人脸识别整体设计方案 客_服交互流程图: 2.服务端代码展示 sk = socket.socket() # s.bind(address) 将套接字绑定到地址.在AF_INET下,以元组(host,port)的形式表示地址. sk.bind(("172.29.25.11",8007)) # 开始监听传入连接. sk.listen(True) while True: for i in range(100): #

  • python scipy卷积运算的实现方法

    scipy的signal模块经常用于信号处理,卷积.傅里叶变换.各种滤波.差值算法等. *两个一维信号卷积 >>> import numpy as np >>> x=np.array([1,2,3]) >>> h=np.array([4,5,6]) >>> import scipy.signal >>> scipy.signal.convolve(x,h) #卷积运算 array([ 4, 13, 28, 27, 1

  • Python实现使用卷积提取图片轮廓功能示例

    本文实例讲述了Python实现使用卷积提取图片轮廓功能.分享给大家供大家参考,具体如下: 一.实例描述 将彩色的图片生成带边缘化信息的图片. 本例中先载入一个图片,然后使用一个"3通道输入,1通道输出的3*3卷积核"(即sobel算子),最后使用卷积函数输出生成的结果. 二.代码 ''''' 载入图片并显示 首先将图片放到代码的同级目录下,通过imread载入,然后将其显示并打印出来 ''' import matplotlib.pyplot as plt # plt 用于显示图片 im

  • Python使用scipy模块实现一维卷积运算示例

    本文实例讲述了Python使用scipy模块实现一维卷积运算.分享给大家供大家参考,具体如下: 一 介绍 signal模块包含大量滤波函数.B样条插值算法等等.下面的代码演示了一维信号的卷积运算. 二 代码 import numpy as np import scipy.signal x = np.array([1,2,3]) h = np.array([4,5,6]) print(scipy.signal.convolve(x, h))#一维卷积运算 三 运行结果 [ 4 13 28 27 1

  • Python通过TensorFlow卷积神经网络实现猫狗识别

    这份数据集来源于Kaggle,数据集有12500只猫和12500只狗.在这里简单介绍下整体思路 处理数据 设计神经网络 进行训练测试 1. 数据处理 将图片数据处理为 tf 能够识别的数据格式,并将数据设计批次. 第一步get_files() 方法读取图片,然后根据图片名,添加猫狗 label,然后再将 image和label 放到 数组中,打乱顺序返回 将第一步处理好的图片 和label 数组 转化为 tensorflow 能够识别的格式,然后将图片裁剪和补充进行标准化处理,分批次返回. 新建

  • Python tensorflow实现mnist手写数字识别示例【非卷积与卷积实现】

    本文实例讲述了Python tensorflow实现mnist手写数字识别.分享给大家供大家参考,具体如下: 非卷积实现 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data data_path = 'F:\CNN\data\mnist' mnist_data = input_data.read_data_sets(data_path,one_hot=True) #offline da

  • Python scipy的二维图像卷积运算与图像模糊处理操作示例

    本文实例讲述了Python scipy的二维图像卷积运算与图像模糊处理操作.分享给大家供大家参考,具体如下: 二维图像卷积运算 一 代码 import numpy as np from scipy import signal, misc import matplotlib.pyplot as plt image = misc.ascent()#二维图像数组,lena图像 w = np.zeros((50,50))#全0二维数组,卷积核 w[0][0]=1.0#修改参数,调整滤波器 w[49][2

  • Tensorflow卷积实现原理+手写python代码实现卷积教程

    从一个通道的图片进行卷积生成新的单通道图的过程很容易理解,对于多个通道卷积后生成多个通道的图理解起来有点抽象.本文以通俗易懂的方式讲述卷积,并辅以图片解释,能快速理解卷积的实现原理.最后手写python代码实现卷积过程,让Tensorflow卷积在我们面前不再是黑箱子! 注意: 本文只针对batch_size=1,padding='SAME',stride=[1,1,1,1]进行实验和解释,其他如果不是这个参数设置,原理也是一样. 1 Tensorflow卷积实现原理 先看一下卷积实现原理,对于

  • Python深度学习之实现卷积神经网络

    一.卷积神经网络 Yann LeCun 和Yoshua Bengio在1995年引入了卷积神经网络,也称为卷积网络或CNN.CNN是一种特殊的多层神经网络,用于处理具有明显网格状拓扑的数据.其网络的基础基于称为卷积的数学运算. 卷积神经网络(CNN)的类型 以下是一些不同类型的CNN: 1D CNN:1D CNN 的输入和输出数据是二维的.一维CNN大多用于时间序列. 2D CNNN:2D CNN的输入和输出数据是三维的.我们通常将其用于图像数据问题. 3D CNNN:3D CNN的输入和输出数

  • Python深度学习pytorch卷积神经网络LeNet

    目录 LeNet 模型训练 在本节中,我们将介绍LeNet,它是最早发布的卷积神经网络之一.这个模型是由AT&T贝尔实验室的研究院Yann LeCun在1989年提出的(并以其命名),目的是识别手写数字.当时,LeNet取得了与支持向量机性能相媲美的成果,成为监督学习的主流方法.LeNet被广泛用于自动取款机中,帮助识别处理支票的数字. LeNet 总体来看,LeNet(LeNet-5)由两个部分组成: 卷积编码器: 由两个卷积层组成 全连接层密集快: 由三个全连接层组成 每个卷积块中的基本单元

  • Python深度学习pytorch神经网络图像卷积运算详解

    目录 互相关运算 卷积层 特征映射 由于卷积神经网络的设计是用于探索图像数据,本节我们将以图像为例. 互相关运算 严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是互相关运算(cross-correlation),而不是卷积运算.在卷积层中,输入张量和核张量通过互相关运算产生输出张量. 首先,我们暂时忽略通道(第三维)这一情况,看看如何处理二维图像数据和隐藏表示.下图中,输入是高度为3.宽度为3的二维张量(即形状为 3 × 3 3\times3 3×3).卷积核的高度和宽度都是2. 注意,

  • Python深度学习神经网络残差块

    目录 ResNet模型 训练模型 ResNet沿用VGG完整的KaTeX parse error: Undefined control sequence: \time at position 2: 3\̲t̲i̲m̲e̲3卷积层设计.残差块里首先有2个相同输出通道数的KaTeX parse error: Undefined control sequence: \time at position 2: 3\̲t̲i̲m̲e̲3卷积层.每个卷积层后接一个批量归一化层和ReLU激活函数.然后我们通过跨

  • Python深度学习理解pytorch神经网络批量归一化

    目录 训练深层网络 为什么要批量归一化层呢? 批量归一化层 全连接层 卷积层 预测过程中的批量归一化 使用批量归一化层的LeNet 简明实现 争议 训练深层神经网络是十分困难的,特别是在较短的实践内使他们收敛更加棘手.在本节中,我们将介绍批量归一化(batch normalization),这是一种流行且有效的技术,可持续加速深层网络的收敛速度.在结合之后将介绍的残差快,批量归一化使得研究人员能够训练100层以上的网络. 训练深层网络 为什么要批量归一化层呢? 让我们回顾一下训练神经网络时出现的

  • Python深度学习pytorch神经网络填充和步幅的理解

    目录 填充 步幅 上图中,输入的高度和宽度都为3,卷积核的高度和宽度都为2,生成的输出表征的维度为 2 × 2 2\times2 2×2.从上图可看出卷积的输出形状取决于输入形状和卷积核的形状. 填充 以上面的图为例,在应用多层卷积时,我们常常丢失边缘像素. 解决这个问题的简单方法即为填充(padding):在输入图像的边界填充元素(通常填充元素是0). 例如,在上图中我们将 3 × 3 3\times3 3×3输入填充到 5 × 5 5\times5 5×5,那么它的输出就增加为 4 × 4

  • Python深度学习pytorch神经网络多输入多输出通道

    目录 多输入通道 多输出通道 1 × 1 1\times1 1×1卷积层 虽然每个图像具有多个通道和多层卷积层.例如彩色图像具有标准的RGB通道来指示红.绿和蓝.但是到目前为止,我们仅展示了单个输入和单个输出通道的简化例子.这使得我们可以将输入.卷积核和输出看作二维张量. 当我们添加通道时,我们的输入和隐藏的表示都变成了三维张量.例如,每个RGB输入图像具有 3 × h × w 3\times{h}\times{w} 3×h×w的形状.我们将这个大小为3的轴称为通道(channel)维度.在本节

  • Python深度学习pytorch神经网络汇聚层理解

    目录 最大汇聚层和平均汇聚层 填充和步幅 多个通道 我们的机器学习任务通常会跟全局图像的问题有关(例如,"图像是否包含一只猫呢?"),所以我们最后一层的神经元应该对整个输入的全局敏感.通过逐渐聚合信息,生成越来越粗糙的映射,最终实现学习全局表示的目标,同时将卷积图层的所有有时保留在中间层. 此外,当检测较底层的特征时(例如之前讨论的边缘),我们通常希望这些特征保持某种程度上的平移不变性.例如,如果我们拍摄黑白之间轮廓清晰的图像X,并将整个图像向右移动一个像素,即Z[i, j] = X[

  • Python深度学习pytorch神经网络Dropout应用详解解

    目录 扰动的鲁棒性 实践中的dropout 简洁实现 扰动的鲁棒性 在之前我们讨论权重衰减(L2​正则化)时看到的那样,参数的范数也代表了一种有用的简单性度量.简单性的另一个有用角度是平滑性,即函数不应该对其输入的微笑变化敏感.例如,当我们对图像进行分类时,我们预计向像素添加一些随机噪声应该是基本无影响的. dropout在正向传播过程中,计算每一内部层同时注入噪声,这已经成为训练神经网络的标准技术.这种方法之所以被称为dropout,因为我们从表面上看是在训练过程中丢弃(drop out)一些

  • Python深度学习pytorch神经网络多层感知机简洁实现

    我们可以通过高级API更简洁地实现多层感知机. import torch from torch import nn from d2l import torch as d2l 模型 与softmax回归的简洁实现相比,唯一的区别是我们添加了2个全连接层.第一层是隐藏层,它包含256个隐藏单元,并使用了ReLU激活函数.第二层是输出层. net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 1

随机推荐