C++模板基础之函数模板与类模板实例详解

泛型编程

 如果让你编写一个函数,用于两个数的交换。在C语言中,我们会用如下方法:

// 交换两个整型
void Swapi(int* p1, int* p2)
{
	int tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}
// 交换两个双精度浮点型
void Swapd(double* p1, double* p2)
{
	double tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}

 因为C语言不支持函数重载,所以用于交换不同类型变量的函数的函数名是不能相同的,并且传参形式必须是址传递,不能是值传递。

 而在学习了C++的函数重载和引用后,我们又会用如下方法实现两个数的交换:

// 交换两个整型
void Swap(int& x, int& y)
{
	int tmp = x;
	x = y;
	y = tmp;
}
// 交换两个双精度浮点型
void Swap(double& x, double& y)
{
	double tmp = x;
	x = y;
	y = tmp;
}

 C++的函数重载使得用于交换不同类型变量的函数可以拥有相同的函数名,并且传参使用引用传参,使得代码看起来不那么晦涩难懂。

但是,这种代码仍然存在它的不足之处:

 1、重载的多个函数仅仅只是类型不同,代码的复用率比较低,只要出现新的类型需要交换,就需要新增对应的重载函数。
 2、代码的可维护性比较低,其中一个重载函数出现错误可能意味着所有的重载函数都出现了错误。

 那我们能否告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成相应的代码呢?

 就像做月饼的模子一样,我们放入不同颜色的材料,就能得到形状相同但颜色不同的月饼。

 如果在C++中,也能够存在这样一个模具,通过给这个模具填充不同颜色的材料(类型),从而得到形状相同但颜色不同的月饼(生成具体类型的代码),那将会大大减少代码的冗余。巧的是前人早已将树栽好,我们只需在此乘凉。

泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。

函数模板

函数模板的概念

 函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本。

函数模板的格式

template<typename T1,typename T2,…,typename Tn>
返回类型 函数名(参数列表)
{
  //函数体
}

例如:

template<typename T>
void Swap(T& x, T& y)
{
	T tmp = x;
	x = y;
	y = tmp;
}

注意:typename是用来定义模板参数的关键字,也可以用class代替,但是不能用struct代替。

函数模板的原理

 那么函数模板的底层原理是什么呢?大家都知道,瓦特改良蒸汽机,人类开始了工业革命,解放了生产力。机器生产淘汰掉了很多手工产品。其本质就是将重复的工作交给了机器去完成。有人给出了论调:懒人创造世界!

马云:世界是懒人创造的

懒不是傻懒,如果你想少干,就要想出懒的方法。要懒出风格,懒出境界。

 函数模板是一个蓝图,它本身并不是函数。是编译器产生特定具体类型函数的模具。所以其实模板就是将本来应该我们做的重复的事情交给了编译器。

 在编译器编译阶段,对于函数模板的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用。比如,当用int类型使用函数模板时,编译器通过对实参类型的推演,将T确定为int类型,然后产生一份专门处理int类型的代码,对于double类型也是如此。

函数模板的实例化

 用不同类型的参数使用模板时,称为模板的实例化。模板实例化分为隐式实例化和显示实例化。

一、隐式实例化:让编译器根据实参推演模板参数的实际类型

#include <iostream>
using namespace std;
template<typename T>
T Add(const T& x, const T& y)
{
	return x + y;
}
int main()
{
	int a = 10, b = 20;
	int c = Add(a, b); //编译器根据实参a和b推演出模板参数为int类型
	return 0;
}

特别注意:使用模板时,编译器一般不会进行类型转换操作。所以,以下代码将不能通过编译:

	int a = 10;
	double b = 1.1;
	int c = Add(a, b);

 因为在编译期间,编译器根据实参推演模板参数的实际类型时,根据实参a将T推演为int,根据实参b将T推演为double,但是模板参数列表中只有一个T,编译器无法确定此处应该将T确定为int还是double。

 此时,我们有两种处理方式,第一种就是我们在传参时将b强制转换为int类型,第二种就是使用下面说到的显示实例化。

二、显示实例化:在函数名后的<>中指定模板参数的实际类型

#include <iostream>
using namespace std;
template<typename T>
T Add(const T& x, const T& y)
{
	return x + y;
}
int main()
{
	int a = 10;
	double b = 1.1;
	int c = Add<int>(a, b); //指定模板参数的实际类型为int
	return 0;
}

注意:使用显示实例化时,如果传入的参数类型与模板参数类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功,则编译器将会报错。

函数模板的匹配原则

一、一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数

#include <iostream>
using namespace std;
//专门用于int类型加法的非模板函数
int Add(const int& x, const int& y)
{
	return x + y;
}
//通用类型加法的函数模板
template<typename T>
T Add(const T& x, const T& y)
{
	return x + y;
}
int main()
{
	int a = 10, b = 20;
	int c = Add(a, b); //调用非模板函数,编译器不需要实例化
	int d = Add<int>(a, b); //调用编译器实例化的Add函数
	return 0;
}

二、对于非模板函数和同名的函数模板,如果其他条件都相同,在调用时会优先调用非模板函数,而不会从该模板产生出一个实例。如果模板可以产生一个具有更好匹配的函数,那么选择模板

#include <iostream>
using namespace std;
//专门用于int类型加法的非模板函数
int Add(const int& x, const int& y)
{
	return x + y;
}
//通用类型加法的函数模板
template<typename T>
T Add(const T& x, const T& y)
{
	return x + y;
}
int main()
{
	int a = Add(10, 20); //与非模板函数完全匹配,不需要函数模板实例化
	int b = Add(2, 2.2); //函数模板可以生成更加匹配的版本,编译器会根据实参生成更加匹配的Add函数
	return 0;
}

三、模板函数不允许自动类型转换,但普通函数可以进行自动类型转换

#include <iostream>
using namespace std;
template<typename T>
T Add(const T& x, const T& y)
{
	return x + y;
}
int main()
{
	int a = Add(2, 2.2); //模板函数不允许自动类型转换,不能通过编译
	return 0;
}

 因为模板函数不允许自动类型转换,所以不会将2自动转换为2.0,或是将2.2自动转换为2。

类模板

类模板的定义格式

template<class T1,class T2,…,class Tn>
class 类模板名
{
  //类内成员声明
};

例如:

template<class T>
class Score
{
public:
	void Print()
	{
		cout << "数学:" << _Math << endl;
		cout << "语文:" << _Chinese << endl;
		cout << "英语:" << _English << endl;
	}
private:
	T _Math;
	T _Chinese;
	T _English;
};

注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。

template<class T>
class Score
{
public:
	void Print();
private:
	T _Math;
	T _Chinese;
	T _English;
};
//类模板中的成员函数在类外定义,需要加模板参数列表
template<class T>
void Score<T>::Print()
{
	cout << "数学:" << _Math << endl;
	cout << "语文:" << _Chinese << endl;
	cout << "英语:" << _English << endl;
}

 除此之外,类模板不支持分离编译,即声明在xxx.h文件中,而定义却在xxx.cpp文件中。

类模板的实例化

 类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后面根<>,然后将实例化的类型放在<>中即可。

    //Score不是真正的类,Score<int>和Score<double>才是真正的类
	Score<int> s1;
	Score<double> s2;

注意:类模板名字不是真正的类,而实例化的结果才是真正的类。

总结

到此这篇关于C++模板基础之函数模板与类模板的文章就介绍到这了,更多相关C++函数模板与类模板内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++ 类模板、函数模板全特化、偏特化的使用

    一.类模板全特化.偏特化 #pragma once #include <iostream> #include <map> template <typename T, typename U> class TC { public: TC() { std::cout << "泛化版本构造函数" << std::endl; } void funtest() { std::cout << "泛化版本成员函数&quo

  • C++函数模板与类模板实例解析

    本文针对C++函数模板与类模板进行了较为详尽的实例解析,有助于帮助读者加深对C++函数模板与类模板的理解.具体内容如下: 泛型编程(Generic Programming)是一种编程范式,通过将类型参数化来实现在同一份代码上操作多种数据类型,泛型是一般化并可重复使用的意思.泛型编程最初诞生于C++中,目的是为了实现C++的STL(标准模板库). 模板(template)是泛型编程的基础,一个模板就是一个创建类或函数的蓝图或公式.例如,当使用一个vector这样的泛型类型或者find这样的泛型函数

  • Python3.5基础之函数的定义与使用实例详解【参数、作用域、递归、重载等】

    本文实例讲述了Python3.5函数的定义与使用.分享给大家供大家参考,具体如下: 1.函数学习框架 2.函数的定义与格式 (1)定义 (2)函数调用 注:函数名称不能以数字开头,建议函数名称的开头用小写的字母 (3)函数有四种格式,分别是:无参数无返回值,有参数无返回值.无参数有返回值.有参数有返回值 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:ZhengzhengLiu # 无参数无返回值 def hello(): # 函数体/

  • C++子类父类成员函数的覆盖和隐藏实例详解

    C++子类父类成员函数的覆盖和隐藏实例详解 函数的覆盖 覆盖发生的条件: (1) 基类必须是虚函数(使用virtual 关键字来进行声明) (2)发生覆盖的两个函数分别位于派生类和基类 (3)函数名和参数列表必须完全相同 函数的隐藏 隐藏发生的条件: (1)子类和父类的函数名相同,参数列表可以不一样 看完下面的例子就明白了 #include "iostream" using namespace std; class CBase{ public: virtual void xfn(int

  • Python中zip()函数的解释和可视化(实例详解)

    zip()的作用 先看一下语法: zip(iter1 [,iter2 [...]]) -> zip object Python的内置help()模块提供了一个简短但又有些令人困惑的解释: 返回一个元组迭代器,其中第i个元组包含每个参数序列或可迭代对象中的第i个元素.当最短的可迭代输入耗尽时,迭代器将停止.使用单个可迭代参数,它将返回1元组的迭代器.没有参数,它将返回一个空的迭代器. 与往常一样,当您精通更一般的计算机科学和Python概念时,此模块非常有用.但是,对于初学者来说,这段话只会引发更

  • C++ Queue队列类模版实例详解

    目录 1.队列的介绍 2.代码实现 3.测试运行 总结 1.队列的介绍 队列的定义 队列(Queue)是一种线性存储结构.它有以下几个特点: 按照"先进先出(FIFO, First-In-First-Out)"方式进出队列. 队列只允许在"队首"进行取出操作(出队列),在"队尾"进行插入操作(入队列 ) 队列实现的方式有两种 基于动态数组实现 基于链表形式实现 队列需要实现的函数 T dequeue() : 出队列,并返回取出的元素 void e

  • C++Stack栈类模版实例详解

    目录 1.栈的介绍 2.栈实现 3.代码测试 总结 1.栈的介绍 栈的实现方式分为3种 基于静态数组实现,内部预设一个很大的数组对象, 实现简单,缺点是空间受限. 基于动态数组实现,内部预设一个容量值,然后分配一段内存空间数组,如果入栈大于默认容量值时,则再次扩大分配新的内存数组,并将旧数组拷贝至新数组及释放旧数组. 基于双向循环链表实现 栈的函数需要实现如下所示: T pop() : 出栈并返回栈顶元素 void  push(const T &t) : 入栈 const T & top(

  • python Scala函数与访问修辞符实例详解

    目录 常规函数 可变参数函数 使用名字调用函数 匿名函数 访问修饰符 常规函数 object Demo { def main(args: Array[String]) { println( "Returned Value : " + addInt(5,7) ); // 普通调用 println( "Returned Value : " + addInt(a=5,b=7) ); // 指定参数调用 } // 方法 默认参数 b = 7 def addInt( a:In

  • C# Random类随机函数实例详解

    目录 引言 一.创建界面 二.效果展示 三.Random类方法 四.代码逻辑 总结: 引言 Random类是非常值得学习的一个类,所以我们今天一起学习一下Random这个类,对于模拟数据这个是随机类可是一个好东西,我们可以用这个随机函数模拟我们想要的数据,从而实现数据模拟,为了更好的学习随机数Random,我们做一个随机挑选饭菜的随机选择器,为了更好的学习,创作不易,点赞关注评论收藏!!!你的点赞是我学习的动力,你点赞是我创作的方向. 一.创建界面 我们平时有选择恐惧症的,每天的人生难题就是今天

  • Java自定义异常类的实例详解

    Java自定义异常类的实例详解 为什么要自己编写异常类?假如jdk里面没有提供的异常,我们就要自己写.我们常用的类ArithmeticException,NullPointerException,NegativeArraySizeException,ArrayIndexoutofBoundsException,SecurityException这些类,都是继续着RuntimeException这个父类,而这个父类还有一个父类是Exception.那么我们自己写异常类的时候,也是继续Excepti

  • Java 中DateUtils日期工具类的实例详解

    Java 中DateUtils日期工具类的实例详解 介绍 在java中队日期类型的处理并不方便,通常都需要借助java.text.SimpleDateFormat类来实现日期类型 和字符串类型之间的转换,但是在jdk1.8之后有所改善,jdk1.7以及之前的版本处理日期类型并不方便, 可以借助Joda Time组件来处理,尤其是日期类型的一些数学操作就更是不方便. java代码 /** * * 日期工具类 java对日期的操作一直都很不理想,直到jdk1.8之后才有了本质的改变. * 如果使用的

  • C++ 双向循环链表类模版实例详解

    目录 1.插入某个节点流程 2.构造函数修改 3.重新实现append和prepend函数 4.修改迭代器类 5.LinkedList.h代码如下 6.测试运行 总结 在上章C++图解单向链表类模板和iterator迭代器类模版详解 我们学习了单链表,所以本章来学习双向循环链表 我们在上个文章代码上进行修改, 由于双向循环链表在我们之前学的单链表上相对于较为复杂,所以需要注意的细节如下所示. 1.插入某个节点流程 如下图所示: 对应代码如下所示: /*插入一个新的节点*/ bool insert

随机推荐